曹翠翠,曹逊.红外发射率动态调制智能涂层的研究进展[J].表面技术,2022,51(8):41-57.
CAO Cui-cui,CAO Xun.Research Progress of Infrared Emissivity Dynamic Modulation Intelligent Coatings[J].Surface Technology,2022,51(8):41-57
红外发射率动态调制智能涂层的研究进展
Research Progress of Infrared Emissivity Dynamic Modulation Intelligent Coatings
  
DOI:10.16490/j.cnki.issn.1001-3660.2022.08.004
中文关键词:  红外辐射  发射率  动态调制  红外伪装  辐射散热
英文关键词:infrared radiation  emissivity  dynamic modulation  infrared camouflage  radiative cooling
基金项目:ANSO国际合作专项(ANSO-CP-KP-2021-01);中国科学院青促会人才支持计划(2018288)
作者单位
曹翠翠 中国科学院上海硅酸盐研究所 高性能陶瓷和超微国家重点实验室,上海 200050;中国科学院大学 材料与光电研究中心,北京 100049 
曹逊 中国科学院上海硅酸盐研究所 高性能陶瓷和超微国家重点实验室,上海 200050;中国科学院大学 材料与光电研究中心,北京 100049 
AuthorInstitution
CAO Cui-cui State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China;Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China 
CAO Xun State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China;Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China 
摘要点击次数:
全文下载次数:
中文摘要:
      随着更多新兴应用的出现,例如变化环境中的动态热伪装、温度自适应辐射制冷以及航天器智能热控等,传统的静态红外发射率工程已经不能满足需求,发射率动态调制成为研究热点。红外发射率动态调制涂层是指在外场(如热、光、电等)刺激下,红外发射率可以发生可逆变化的材料。根据调制方式的不同,系统总结了热调制、电调制、光调制、应变调制、湿度调制等几大类红外发射率动态调制智能涂层的研究进展,概述了其基本原理、相关材料及应用现状。着重探讨分析了热调制涂层中的二氧化钒(VO2)、GeSeTe(GST),电调制涂层中的三氧化钨(WO3)、钛酸锂(Li4Ti5O12,LTO)、聚苯胺、聚噻吩、石墨烯等几类常用的材料体系,最后对每一类材料的性能特点及其存在的问题进行了对比分析。红外发射率动态调制智能涂层的研究将极大地促进其在隐身伪装及热量控制方面的应用,但其仍处于早期开发阶段,面临诸多机遇和挑战,在未来,红外发射率动态调控涂层将向着柔性化、大面积、多波谱、系统化、更智能的方向发展。
英文摘要:
      Recently, the traditional static infrared emissivity engineering can no longer meet the high requirements of advanced applications such as dynamic infrared camouflage in changing environments, temperature adaptive radiative cooling, and spacecraft intelligent thermal control, thus dynamic emissivity modulation has attracted researchers’ attention. Infrared emissivity dynamic modulation materials refer to materials whose infrared emissivity can be reversibly modulated under external stimulations, such as thermal, electricity and optical, etc. In this review, we systematically summarized the progress, basic modulation principles, materials and corresponding applications of several categories of materials sorted by stimulus, including thermal modulation materials, electrical modulation materials, optical modulation materials, strain modulation materials and wetting modulation materials. Specifically, this paper mainly focused on the first two categories and introduced the following most commonly used materials in detail:vanadium dioxide (VO2), GeSeTe (GST), tungsten trioxide (WO3), lithium titanate (Li4Ti5O12, LTO), polyaniline, polythiophene, and graphene, etc. Last, the performance mainly including the modulation ability, modulation spectra range, response time, stability, complexity of structure and cost, etc. as well as existing obstacles of each type of material has been analyzed and compared. We hope this review could provide reference for the research on emissivity dynamic modulation materials and inspire more creative material design and applications in various areas. The research on the infrared emissivity dynamic modulation intelligent coatings will greatly broaden its practical applications in infrared stealth/camouflage, radiative cooling, intelligent smart control, infrared imaging and display areas, despite it is still in the early developing stage and faces many opportunities and challenges. In the future, with more explore on new materials and test methods, as well as interaction with other advanced technologies such as electronics, circuit integration, artificial intelligence, etc. the infrared emissivity dynamic modulation coatings will develop towards a more intelligent direction:flexibility, large area, multispectral modulation, and detection-analyze-modulate system construction.
查看全文  查看/发表评论  下载PDF阅读器
关闭

关于我们 | 联系我们 | 投诉建议 | 隐私保护 | 用户协议

您是第19939788位访问者    渝ICP备15012534号-3

版权所有:《表面技术》编辑部 2014 surface-techj.com, All Rights Reserved

邮编:400039 电话:023-68792193传真:023-68792396 Email: bmjs@surface-techj.com

渝公网安备 50010702501715号