甘园园,纪献兵,赵昶,孟宇航,苗政.超疏水高/低黏附表面的冷凝传热特性[J].表面技术,2022,51(7):288-296, 323.
GAN Yuan-yuan,JI Xian-bin,ZHAO Chang,MENG Yu-hang,MIAO Zheng.Heat Transfer Characteristics of Superhydrophobic High Adhesion Surface and Superhydrophobic Low Adhesion Surface[J].Surface Technology,2022,51(7):288-296, 323
超疏水高/低黏附表面的冷凝传热特性
Heat Transfer Characteristics of Superhydrophobic High Adhesion Surface and Superhydrophobic Low Adhesion Surface
  
DOI:10.16490/j.cnki.issn.1001-3660.2022.07.028
中文关键词:  超疏水  黏附性  蒸汽流量  滴状冷凝  冷凝传热  气–液界面剪切力
英文关键词:superhydrophobic  adhesion  steam flow  dropwise condensation  condensation heat transfer  air-liquid interface shear force
基金项目:国家自然科学基金(52176154,51776064);中央高校登峰计划项目(2020DF002)
作者单位
甘园园 华北电力大学 低品位能源多相流与传热北京市重点实验室,北京 102206 
纪献兵 华北电力大学 低品位能源多相流与传热北京市重点实验室,北京 102206 ;华北电力大学 电站能量传递转化与系统教育部重点实验室,北京 102206 
赵昶 华北电力大学 低品位能源多相流与传热北京市重点实验室,北京 102206 
孟宇航 华北电力大学 低品位能源多相流与传热北京市重点实验室,北京 102206 
苗政 华北电力大学 低品位能源多相流与传热北京市重点实验室,北京 102206 ;华北电力大学 电站能量传递转化与系统教育部重点实验室,北京 102206 
AuthorInstitution
GAN Yuan-yuan The Beijing Key Laboratory of Low-grade Energy Multiphase Flow and Heat Transfer,Beijing 102206, China 
JI Xian-bin The Beijing Key Laboratory of Low-grade Energy Multiphase Flow and Heat Transfer,Beijing 102206, China ;The Key Laboratory of Power Station Energy Transfer and System of Ministry of Education, North China Electric Power University, Beijing 102206, China 
ZHAO Chang The Beijing Key Laboratory of Low-grade Energy Multiphase Flow and Heat Transfer,Beijing 102206, China 
MENG Yu-hang The Beijing Key Laboratory of Low-grade Energy Multiphase Flow and Heat Transfer,Beijing 102206, China 
MIAO Zheng The Beijing Key Laboratory of Low-grade Energy Multiphase Flow and Heat Transfer,Beijing 102206, China ;The Key Laboratory of Power Station Energy Transfer and System of Ministry of Education, North China Electric Power University, Beijing 102206, China 
摘要点击次数:
全文下载次数:
中文摘要:
      目的 获得超疏水高、低黏附表面传热性能的差异及其规律。方法 以紫铜为基底,制备了亲水、超疏水高黏附与超疏水低黏附3类表面,研究了表面黏附性、蒸汽体积流量和冷却水流量等参数对冷凝传热的影响。结果 蒸汽体积流量较小时,3类表面中,超疏水低黏附表面因液滴受到的黏附力较小而具有最大的冷凝传热系数。当蒸汽体积流量等于4.5 L/min时,超疏水高黏附和超疏水低黏附表面的传热系数分别为14.5 kW/(m2.K)和19.8 kW/(m2.K),相比亲水表面分别强化了3.6和4.9倍。随蒸汽流量的增加,3类表面的冷凝传热系数均逐渐增大。但高黏附表面上的液滴因受到的气–液界面剪切作用较强,其传热系数的增幅在3类表面中最为显著。当蒸汽体积流量增大到6.0 L/min时,超疏水高黏附表面的冷凝传热系数可达105 kW/(m2.K),此时略大于超疏水低黏附表面的冷凝传热系数。结论 液滴所受黏附力大小和气–液界面剪切作用程度共同决定了液滴脱落直径和冷凝传热系数的大小。因此,两类超疏水表面的冷凝传热系数随蒸汽体积流量变化的曲线存在交叉点,且交叉点所对应的蒸汽体积流量随着冷却水流量的增大而增加。
英文摘要:
      To further study the condensation heat transfer performance of superhydrophobic surfaces with different adhesion characteristics. Hydrophilic surface, superhydrophobic high adhesion surface and superhydrophobic low adhesion surface were prepared using copper as a substrate. The effects of factors such as surface adhesion, steam volume flow and cooling water flow on the condensation heat transfer were studied. When the volume flow of steam is small, among the three types of surfaces, the superhydrophobic low adhesion surface has the largest condensation heat transfer coefficient due to the lower adhesion force of the droplets. As the steam volume flow rate was equal to 5.0 L/min, the heat transfer coefficients of superhydrophobic high or low adhesion surfaces are 14.5 kW/(m2.K) or 19.8 kW/(m2.K), respectively, which are stronger than hydrophilic surfaces 3.6 times and 4.9 times. With the increase of steam flow, the condensation heat transfer coefficients of the three types of surfaces gradually increase. However, the droplets on the highly adherent surface were subjected to a stronger shearing effect at the gas-liquid interface, and the increase in the heat transfer coefficient was the most significant among the three types of surfaces. When the steam volume flow was large, the condensation heat transfer coefficient of the superhydrophobic high adhesion surface was slightly larger than that of the superhydrophobic low adhesion surface. However, the condensation heat transfer coefficient of the superhydrophobic high adhesion surface was slightly larger than that of the superhydrophobic low adhesion surface when the steam volume flow was large. When the steam volume flow rate was 6.3 L/min, the condensation heat transfer coefficient of the superhydrophobic high adhesion surface can reach 105 kW/(m2.K), which was slightly larger than the condensation heat transfer coefficient of the superhydrophobic low adhesion surface. The size of the adhesive force on the droplet and the degree of shear at the gas-liquid interface determine the droplet shedding diameter and the condensation heat transfer coefficient. Therefore, the curves of the condensation heat transfer coefficient of the two types of superhydrophobic surfaces with the change of the steam volume flow rate have intersection points, and the steam volume flow rate corresponding to the intersection point increases correspondingly with the increase of the cooling water flow rate.
查看全文  查看/发表评论  下载PDF阅读器
关闭

关于我们 | 联系我们 | 投诉建议 | 隐私保护 | 用户协议

您是第20098898位访问者    渝ICP备15012534号-3

版权所有:《表面技术》编辑部 2014 surface-techj.com, All Rights Reserved

邮编:400039 电话:023-68792193传真:023-68792396 Email: bmjs@surface-techj.com

渝公网安备 50010702501715号