程丹丹,姚怀,焦琰珂,熊毅.挤压态Mg–1.8Zn–0.5Zr–xGd(0≤x≤2.5%)生物镁合金微观组织演化及降解机理[J].表面技术,2022,51(7):195-206.
CHENG Dan-dan,YAO Huai,JIAO Yan-ke,XIONG Yi.Microstructure Evolution and Degradation Mechanism of As-extruded Mg-1.8Zn-0.5Zr-xGd (0≤x≤2.5wt.%) Bio-magnesium Alloys[J].Surface Technology,2022,51(7):195-206
挤压态Mg–1.8Zn–0.5Zr–xGd(0≤x≤2.5%)生物镁合金微观组织演化及降解机理
Microstructure Evolution and Degradation Mechanism of As-extruded Mg-1.8Zn-0.5Zr-xGd (0≤x≤2.5wt.%) Bio-magnesium Alloys
  
DOI:10.16490/j.cnki.issn.1001-3660.2022.07.019
中文关键词:  镁合金  挤压  微观组织  降解机理
英文关键词:magnesium alloy  extrusion  microstructure  corrosion resistance
基金项目:河南省高等学校重点科研项目(20A430010);河南科技大学大学生训练计划(2020030);国家自然科学基金(51375146,U1804146)
作者单位
程丹丹 郑州财税金融职业学院,郑州 450000 
姚怀 河南科技大学 材料科学与工程学院,河南 洛阳 471023 
焦琰珂 河南科技大学 材料科学与工程学院,河南 洛阳 471023 
熊毅 河南科技大学 材料科学与工程学院,河南 洛阳 471023 
AuthorInstitution
CHENG Dan-dan Zhengzhou Vocational College of Finance and Taxation, Zhengzhou 450000, China 
YAO Huai School of Materials Science and Engineering, Henan University of Science and Technology, Henan Luoyang 471023, China 
JIAO Yan-ke School of Materials Science and Engineering, Henan University of Science and Technology, Henan Luoyang 471023, China 
XIONG Yi School of Materials Science and Engineering, Henan University of Science and Technology, Henan Luoyang 471023, China 
摘要点击次数:
全文下载次数:
中文摘要:
      目的 提高Mg–0.5Zr–1.8Zn–xGd(x=0、0.5%、1.0%、1.5%、2.0%、2.5%)生物镁合金在模拟体液中的耐腐蚀性能。方法 先对Mg–0.5Zr–1.8Zn–xGd合金进行固溶处理,然后利用反向挤压技术对其进行组织细化处理,采用OM、SEM、EDS、EBSD和TEM分析了挤压后Mg–0.5Zr–1.8Zn–xGd合金的晶粒形貌、织构特征、相组成和表面腐蚀形貌。利用电化学工作站和静态腐蚀测试了挤压后合金的耐腐蚀性能。利用XPS对Mg–0.5Zr–1.8Zn–xGd合金腐蚀前、后的表面元素及其化学状态进行表征。结果 挤压温度和挤压比分别为360 ℃和7.7时,合金都发生了较为完全的动态再结晶。随Gd含量的增加,晶粒尺寸逐渐减小,耐腐蚀性能先增强后减弱。当Gd质量分数为1.5%时,合金具有较好的耐腐蚀性能,其静态腐蚀速率约为0.447 mm/a;Gd质量分数为1.5%时,合金中析出了少量的纳米级圆棒状(Mg,Zn)3Gd相颗粒和纳米级椭圆球状Mg2Zn11相颗粒,且随着Gd含量的增加,合金中第二相颗粒的数量及体积分数逐渐增大。Mg–0.5Zr–1.8Zn–1.5Gd合金在SBF中浸泡120 h内,随浸泡时间的增加,腐蚀过程分3个阶段,首先合金表面Mg(OH)2腐蚀产物的生成及增厚导致腐蚀速率在腐蚀初期快速降低,随后致密的Mg(OH)2、(Ca,Mg)3(PO4)2和Ca10(PO4)6(OH)2腐蚀产物的生成及增厚导致腐蚀速率缓慢降低,最后腐蚀产物的生成与溶解达到动态平衡导致腐蚀速率逐渐趋于稳定。结论 挤压变形能够显著细化Mg–0.5Zr–1.8Zn–xGd合金的晶粒,均匀化和弥散化析出相分布,有效改善镁合金在模拟体液中的耐腐蚀性能。
英文摘要:
      The work aims to improve the corrosion resistance of Mg-0.5Zr-1.8Zn-xGd (x=0, 0.5wt.%, 1.0wt.%, 1.5wt.%, 2.0wt.%, 2.5wt.%) bio-magnesium alloys in the simulated body fluid. Mg-0.5Zr-1.8Zn-xGd alloys are treated by solid-solution and extrusion to get uniform fine microstructure. The grain morphologies, texture, phase compositions and surface corrosion morphology are analyzed by OM, SEM, EDS, EBSD and TEM. The corrosion resistance of the alloysis characterized by electrochemical curves and corrosion tests. The surface elements with chemical states before and after corrosion of Mg-0.5Zr-1.8Zn-xGd alloys are texted by XPS. The results show that when the extrusion temperature and extrusion ratio are 360 ℃ and 7.7, the alloy undergoes relatively complete dynamic recrystallization. With the increase of Gd content, the grain size gradually decreases, and the corrosion resistance first increases and then decreases. The alloy with a Gd content of 1.5wt.% has a good corrosion resistance, and the corrosion rate is about 0.447 mm/a. When the Gd content is 1.5wt.%, a small amount of nano-sized round rod-shaped (Mg,Zn)3Gd phase particles and nano-sized elliptical spherical Mg2Zn11 phase particles are precipitated in the alloy, and with the increase of Gd content, the number and volume fraction of second phase particles in the alloy gradually increase. The corrosion process of Mg-0.5Zr-1.8Zn-1.5Gd alloy is divided into three stages with the increase of soaking time within 120 h. The formation and thickening of Mg(OH)2 corrosion products on the alloy surface leads to a rapid decrease in the corrosion rate at the initial stage. The subsequent formation and thickening of compact Mg(OH)2, (Ca, Mg)3(PO4)2 and Ca10(PO4)6(OH)2 corrosion products lead to a slow decrease in corrosion rate. Finally, the formation and dissolution of corrosion products reach a dynamic equilibrium, resulting in a stable corrosion rate.Extrusion deformation can significantly enhance the corrosion resistance of Mg-0.5Zr-1.8Zn-xGd alloys by effectively refining the grains with homogenize and disperse precipitate distribution.
查看全文  查看/发表评论  下载PDF阅读器
关闭

关于我们 | 联系我们 | 投诉建议 | 隐私保护 | 用户协议

您是第19493945位访问者    渝ICP备15012534号-3

版权所有:《表面技术》编辑部 2014 surface-techj.com, All Rights Reserved

邮编:400039 电话:023-68792193传真:023-68792396 Email: bmjs@surface-techj.com

渝公网安备 50010702501715号