张青,翁俊,刘繁,李廷垟,汪建华,熊礼威,赵洪阳.高功率微波等离子体对单晶金刚石同质外延生长的影响[J].表面技术,2022,51(6):364-373, 398.
ZHANG Qing,WENG Jun,LIU Fan,LI Ting-yang,WANG Jian-hua,XIONG Li-wei,ZHAO Hong-yang.Effect of High Microwave Power Plasma on the Homogeneous Epitaxy Growth of Single Crystal Diamond[J].Surface Technology,2022,51(6):364-373, 398
高功率微波等离子体对单晶金刚石同质外延生长的影响
Effect of High Microwave Power Plasma on the Homogeneous Epitaxy Growth of Single Crystal Diamond
  
DOI:10.16490/j.cnki.issn.1001-3660.2022.06.035
中文关键词:  单晶金刚石  微波等离子体  化学气相沉积  高功率  高速率
英文关键词:single crystal diamond  microwave plasma  chemical vapor deposition  high microwave power  high growth rate
基金项目:国家自然科学基金(51402220);湖北省教育厅科学研究计划(Q20201512)
作者单位
张青 武汉工程大学 湖北省等离子体化学与新材料重点实验室,武汉 430205 
翁俊 武汉工程大学 湖北省等离子体化学与新材料重点实验室,武汉 430205 
刘繁 武汉工程大学 湖北省等离子体化学与新材料重点实验室,武汉 430205 
李廷垟 武汉工程大学 湖北省等离子体化学与新材料重点实验室,武汉 430205 
汪建华 武汉工程大学 湖北省等离子体化学与新材料重点实验室,武汉 430205 
熊礼威 武汉工程大学 湖北省等离子体化学与新材料重点实验室,武汉 430205 
赵洪阳 武汉工程大学 湖北省等离子体化学与新材料重点实验室,武汉 430205 
AuthorInstitution
ZHANG Qing Wuhan Institute of Technology, Key Laboratory of Plasma Chemistry and Advanced Materials of Hubei Province, Wuhan 430205, China 
WENG Jun Wuhan Institute of Technology, Key Laboratory of Plasma Chemistry and Advanced Materials of Hubei Province, Wuhan 430205, China 
LIU Fan Wuhan Institute of Technology, Key Laboratory of Plasma Chemistry and Advanced Materials of Hubei Province, Wuhan 430205, China 
LI Ting-yang Wuhan Institute of Technology, Key Laboratory of Plasma Chemistry and Advanced Materials of Hubei Province, Wuhan 430205, China 
WANG Jian-hua Wuhan Institute of Technology, Key Laboratory of Plasma Chemistry and Advanced Materials of Hubei Province, Wuhan 430205, China 
XIONG Li-wei Wuhan Institute of Technology, Key Laboratory of Plasma Chemistry and Advanced Materials of Hubei Province, Wuhan 430205, China 
ZHAO Hong-yang Wuhan Institute of Technology, Key Laboratory of Plasma Chemistry and Advanced Materials of Hubei Province, Wuhan 430205, China 
摘要点击次数:
全文下载次数:
中文摘要:
      目的 为了优化单晶金刚石大批量生长的等离子体环境,研究高功率微波等离子体环境对单晶金刚石外延生长层的影响。方法 利用实验室自主研发的915 MHz–MPCVD装置,在20~35 kW高功率微波馈入的条件下,具体研究了高功率等离子体环境中甲烷浓度、微波功率及基片温度对单晶金刚石外延生长层的影响。利用光学显微镜、激光拉曼光谱及光致发光光谱对所生长的单晶金刚石进行形貌质量表征,利用等离子体发射光谱对高功率微波等离子体环境进行诊断。结果 在馈入25 kW的微波功率时,将甲烷的体积分数从6%下降至3%,可以使单晶金刚石更易于出现层状生长结构;保持甲烷体积分数为3%,将微波功率从25 kW提高到35 kW,可以进一步优化单晶金刚石生长的层状结构,提高单晶金刚石的生长质量和生长速率;保持微波功率为35 kW,当甲烷体积分数为3%时,将基片温度从800 ℃提高到1 210 ℃可以明显提高单晶金刚石的生长速率,但会易于引入非金刚石相;保持甲烷体积分数为3%,将微波功率提高到35 kW,可以在等离子体中激发更多有利于金刚石快速生长的含碳活性基团;当微波功率为35 kW、甲烷体积分数为3%、基片温度为950 ℃时,单晶金刚石的生长速率可达25.6 μm/h,且单晶金刚石的质量及颜色较好。结论 在高功率等离子体环境中,即使在相对较低的甲烷浓度下,通过大幅度提高微波功率也可以有效活化含碳基团,在等离子体中产生有利于单晶金刚石高质量高速生长的活性基团;基片温度对单晶金刚石中的非金刚石相及颜色具有显著影响,在微波功率为35 kW、甲烷体积分数为3%的情况下,将基片温度控制在950 ℃附近,可以有效抑制非金刚石相的生成。
英文摘要:
      The effect of a high-power microwave plasma environment on the epitaxial growth layer of single crystal diamond is investigated to optimize the plasma environment for the mass growth of single crystal diamond. The effects of methane concentration, microwave power, and substrate temperature on the epitaxial growth layer of single crystal diamond in a high-power plasma environment are investigated using a self-developed 915 MHz-MPCVD device by the laboratory under the conditions of 20-35 kW high-power microwave feeding. Such advanced equipment as optical microscope, laser Raman spectrum, and photoluminescence spectrum are used to characterize the morphology and quality of the grown single crystal diamond, and the plasma emission spectrum is used to diagnose the high-power microwave plasma environment in which the diamond is grown. The results show that decreasing the methane concentration from 6% to 3% in a plasma environment with microwave power of 25 kW can make the deposited single crystal diamond more prone to layered growth structure in the presence of a 25 kW microwave source. Increases in methane concentration result in a significant decrease in the offset between the peak position of the diamond characteristic peak and the value of 1 332 cm–1, as well as a reduction in the compressive stress of the diamond, as well as a shift of the diamond characteristic peak to a low wave number. Increased microwave power from 25 kW to 35 kW when methane concentration is maintained at 3% results in the development of a layered growth morphology with complete structure, regular structure, and uniform step spacing on the growth surface of single crystal diamond. This results is an improvement in the growth quality and growth rate of single crystal diamond because increasing the power can promote more carbon containing active groups conducive to diamond growth. The intensity of the diamond impurity peak decreases gradually as the methane concentration is reduced and the microwave power is increased, demonstrating that it is capable of effectively inhibiting the formation of impurity defects in single crystal diamond and improving the epitaxial quality of single crystal diamond. The temperature of the substrate can be increased from 800 ℃ to 1 210 ℃ when the microwave power is 35 kW and the methane concentration is 3%. This can significantly improve the growth rate of single crystal diamond, but it will be easy to introduce non diamond phase. When the microwave power is 35 kW, the methane concentration is 3%, and the substrate temperature is 950 ℃, the growth rate of single crystal diamond can reach 25.6 μm/h, and the quality and color of single crystal diamond are improved, the growth rate of single crystal diamond can reach 25.6 μm/h. The following are the findings and conclusions:It has been demonstrated that, even in the presence of low methane concentrations, carbon containing groups can be effectively activated by increasing microwave power by a factor of ten, and that active groups conducive to the high-quality and high-speed growth of single crystal diamond can be produced in the plasma. In single crystal diamond, the temperature of the substrate has a significant impact on the non-diamond phase and color of the diamond. The proper use of a microwave power of 35 kW and a methane concentration of 3% can effectively inhibit the formation of the non diamond phase when the substrate temperature is about 950 ℃.
查看全文  查看/发表评论  下载PDF阅读器
关闭

关于我们 | 联系我们 | 投诉建议 | 隐私保护 | 用户协议

您是第19956142位访问者    渝ICP备15012534号-3

版权所有:《表面技术》编辑部 2014 surface-techj.com, All Rights Reserved

邮编:400039 电话:023-68792193传真:023-68792396 Email: bmjs@surface-techj.com

渝公网安备 50010702501715号