蓝席建,张馨,朱能杰,刘文静,宣孝文,沈权,王立平,严明龙,伍大恒,吴斌.极地低温高强韧耐磨破冰涂层制备及性能评价[J].表面技术,2022,51(6):59-66.
LAN Xi-jian,ZHANG Xin,ZHU Neng-jie,LIU Wen-jing,XUAN Xiao-wen,SHEN Quan,WANG Li-ping,YAN Ming-long,WU Da-heng,WU Bin.Preparation and Performance Evaluation of Polar Low Temperature High Strength, Toughness, Wear Resistance and Ice Breaking Coating[J].Surface Technology,2022,51(6):59-66
极地低温高强韧耐磨破冰涂层制备及性能评价
Preparation and Performance Evaluation of Polar Low Temperature High Strength, Toughness, Wear Resistance and Ice Breaking Coating
  
DOI:10.16490/j.cnki.issn.1001-3660.2022.06.006
中文关键词:  极地  低温  破冰  防冰  耐磨性  高强韧  涂料
英文关键词:polar region  low temperature  ice breaking  anti icing  wear resistance  high strength and toughness  coating
基金项目:宁波市科技创新2025重大专项(2020Z053);浙江省自然科学基金(LQ21E050021)
作者单位
蓝席建 中国科学院宁波材料技术与工程研究所 中国科学院海洋新材料与应用技术重点实验室,浙江 宁波 315201 
张馨 中国科学院宁波材料技术与工程研究所 中国科学院海洋新材料与应用技术重点实验室,浙江 宁波 315201;沈阳化工大学 材料科学与工程学院,沈阳 110142 
朱能杰 中国科学院宁波材料技术与工程研究所 中国科学院海洋新材料与应用技术重点实验室,浙江 宁波 315201 
刘文静 中国科学院宁波材料技术与工程研究所 中国科学院海洋新材料与应用技术重点实验室,浙江 宁波 315201;沈阳化工大学 材料科学与工程学院,沈阳 110142 
宣孝文 中国科学院宁波材料技术与工程研究所 中国科学院海洋新材料与应用技术重点实验室,浙江 宁波 315201;中国科学技术大学 纳米科学技术学院,江苏 苏州 215123 
沈权 中国极地研究中心,上海 200136 
王立平 中国科学院宁波材料技术与工程研究所 中国科学院海洋新材料与应用技术重点实验室,浙江 宁波 315201 
严明龙 中国科学院宁波材料技术与工程研究所 中国科学院海洋新材料与应用技术重点实验室,浙江 宁波 315201 
伍大恒 中国科学院宁波材料技术与工程研究所 中国科学院海洋新材料与应用技术重点实验室,浙江 宁波 315201 
吴斌 中国科学院宁波材料技术与工程研究所 中国科学院海洋新材料与应用技术重点实验室,浙江 宁波 315201 
AuthorInstitution
LAN Xi-jian Key Laboratory of Marine Materials and Related Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Zhejiang Ningbo 315201, China 
ZHANG Xin Key Laboratory of Marine Materials and Related Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Zhejiang Ningbo 315201, China;College of Materials Science and Engineering, Shenyang University of Chemical Technology, Shenyang 110142, China 
ZHU Neng-jie Key Laboratory of Marine Materials and Related Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Zhejiang Ningbo 315201, China 
LIU Wen-jing Key Laboratory of Marine Materials and Related Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Zhejiang Ningbo 315201, China;College of Materials Science and Engineering, Shenyang University of Chemical Technology, Shenyang 110142, China 
XUAN Xiao-wen Key Laboratory of Marine Materials and Related Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Zhejiang Ningbo 315201, China;Nano Science and Technology Institute, University of Science and Technology of China, Jiangsu Suzhou 215123, China 
SHEN Quan Polar Research Institute of China, Shanghai 200136, China 
WANG Li-ping Key Laboratory of Marine Materials and Related Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Zhejiang Ningbo 315201, China 
YAN Ming-long Key Laboratory of Marine Materials and Related Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Zhejiang Ningbo 315201, China 
WU Da-heng Key Laboratory of Marine Materials and Related Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Zhejiang Ningbo 315201, China 
WU Bin Key Laboratory of Marine Materials and Related Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Zhejiang Ningbo 315201, China 
摘要点击次数:
全文下载次数:
中文摘要:
      目的 制备低温下具有高耐磨和高强韧性能的极地破冰涂层,并研究其低温服役性能。方法 以氢化环氧树脂和氨基有机硅固化剂为基料,涂层交联固化时依靠Si==C、Si—O—Si键的作用形成软硬嵌段结构,有效改善环氧树脂的低温脆性,降低表面张力,将KH560改性的SiC、玄武岩等高硬度无机粉体和柔性减阻的聚四氟乙烯粉等骨料在基料中充分分散均匀,制备极地低温高强韧耐磨破冰涂层。同时关注到此类产品仅有应用案例而无标准的现状,基于产品实际及潜在应用,增设部分新的指标及检测方法并进行了探讨。通过‒50 ℃低温下的附着力、抗冲击性能、柔韧性能来评价涂层的低温服役性能。通过‒50 ℃低温下的摆杆硬度、耐磨性来评价涂层的低温高耐磨性能,通过耐中性盐雾试验、人工加速老化试验及各试验前后3 000 h的附着力、SEM形貌变化来评价涂层的耐久性。通过接触角、着冰力来表征涂层的防冰性能。结果 涂层的硬度和耐磨性随着颜基比的增大而逐渐增大,接触角、着冰力、耐盐雾性能和拉开法附着力均先增后降。其中,c组的摆杆硬度为0.553,磨耗为16 mg(1 000 g/750 r),接触角约为98.8°,着冰力为32 N,综合性能表现最优;人工加速老化试验和中性盐雾试验的SEM形貌也表明c组涂层具有较强的耐久性。结论 氢化环氧树脂和氨基有机硅固化交联的环氧聚硅氧烷体系保持较高硬度的同时可有效避免低温脆性,涂层的低温服役性能、高耐磨性能、耐久性能、防冰性能良好,低温附着力、耐冲击性能、柔韧性好。涂层在高硬度无机粉体和柔性减阻填料的协同作用下,有效提高涂层在低温下的耐磨性、硬度等性能,可满足极地低温环境下舰船破冰区防护的要求。
英文摘要:
      The exploration and development of the Antarctic and Arctic regions requires the support of safe and reliable polar equipment and technologies. However, the preparation of polar ice-breaking coatings with high wear resistance and high toughness at low temperatures is still a huge challenge. In this work, we propose to use hydrogenated epoxy resin and amino silicone as reactive raw materials, and rely on Si==C and Si—O—Si bonds to form a soft and hard block structure during cross-linking and curing stage of the coating, so as to effectively improve the low temperature brittleness of epoxy resin and reduce the surface tension. High-hardness inorganic powders such as SiC and basalt modified with KH560 and flexible rent-reducing fillers such as polytetrafluoroethylene powders are added to the modified resin to prepare a polar icebreaker coating with low temperature resistance, high strength and toughness. At the same time, we pay attention to the current situation that such products have only application cases and no standards. From the perspective of actual and potential application of products, some new indicators and detection methods are added and discussed. The low temperature service performance of the coating was evaluated by the adhesion circle test, impact resistance test and flexibility test at ‒50 ℃. The low temperature wear resistance of the coating was evaluated by the pendulum rod hardness test and wear resistance test under ‒50 ℃. The durability of the coating was evaluated by neutral salt spray resistance test, artificial accelerated aging test, the change of adhesion and morphology (SEM) before and after each 3 000 h test. The anti-icing performance of the coating was characterized by the contact angle tester and the icing force tester.The hardness and wear resistance of the coatings increased gradually with the increase of the pigment to varnish base ratio, while the contact angle, icing force, salt spray resistance and pull-off adhesion of the coating increased first and then decreased. Among them, the hardness of the coating in group c is 0.553, the wear resistance is 1 000 g/750 r, the wear is 16mg, the contact angle is about 98.8°, the ice force is 32 N, indicating that the overall performance is the best. Artificial accelerated aging and salt spray SEM morphology analysis also showed that the c-group coating had the best durability.The epoxy-polysiloxane system prepared from hydrogenated epoxy resin and amino silicone can effectively avoid the low temperature brittleness of epoxy while maintaining high hardness. Under the low temperature service, the coating exhibits high wear resistance, durability, good anti-icing performance, high low-temperature adhesion, good impact resistance, good flexibility, and good anti-icing performance. It can be seen that under the synergistic effect of high-hardness inorganic powder and flexible drag-reducing filler, the coating can effectively improve the wear resistance, hardness and other properties of the coating at low temperature, and then can meet the protection needs of ships in the ice-breaking area under the low temperature environment.
查看全文  查看/发表评论  下载PDF阅读器
关闭

关于我们 | 联系我们 | 投诉建议 | 隐私保护 | 用户协议

您是第19962775位访问者    渝ICP备15012534号-3

版权所有:《表面技术》编辑部 2014 surface-techj.com, All Rights Reserved

邮编:400039 电话:023-68792193传真:023-68792396 Email: bmjs@surface-techj.com

渝公网安备 50010702501715号