杨翔宁,樊伟杰,张勇,宋宇航,管宇,张泰峰,杨文飞.模拟海洋大气环境下7B04铝合金板–TC16钛合金铆钉搭接件电偶腐蚀研究[J].表面技术,2022,51(5):223-233.
YANG Xiang-ning,FAN Wei-jie,ZHANG Yong,SONG Yu-hang,GUAN Yu,ZHANG Tai-feng,YANG Wen-fei.Galvanic Corrosion of 7B04 Aluminium Alloy Plate-TC16 Titanium Alloy Rivet Lap Joint in Simulated Marine Atmospheric Environment[J].Surface Technology,2022,51(5):223-233
模拟海洋大气环境下7B04铝合金板–TC16钛合金铆钉搭接件电偶腐蚀研究
Galvanic Corrosion of 7B04 Aluminium Alloy Plate-TC16 Titanium Alloy Rivet Lap Joint in Simulated Marine Atmospheric Environment
  
DOI:10.16490/j.cnki.issn.1001-3660.2022.05.023
中文关键词:  铝合金  钛合金  电偶腐蚀  仿真  极化曲线  XRD  疲劳
英文关键词:aluminium alloy  titanium alloy  galvanic corrosion  simulation  polarization curve  XRD  fatigue
基金项目:国家自然科学基金(5210110643);山东省自然科学基金(ZR2020AAE130,ZR2020ME131);山东省高等学校青创科技支持计划(2020KJA014)
作者单位
杨翔宁 中国航空工业集团有限公司 沈阳飞机设计研究所,沈阳 110031 
樊伟杰 海军航空大学青岛校区,山东 青岛 266041 
张勇 海军航空大学青岛校区,山东 青岛 266041 
宋宇航 海军航空大学青岛校区,山东 青岛 266041 
管宇 中国航空工业集团有限公司 沈阳飞机设计研究所,沈阳 110031 
张泰峰 海军航空大学青岛校区,山东 青岛 266041 
杨文飞 海军航空大学青岛校区,山东 青岛 266041 
AuthorInstitution
YANG Xiang-ning Shenyang Aircraft Design Institute, China Aviation Industry Group Co., Ltd., Shenyang 110031, China 
FAN Wei-jie Qingdao Campus, Naval Aviation University, Shandong Qingdao 266041, China 
ZHANG Yong Qingdao Campus, Naval Aviation University, Shandong Qingdao 266041, China 
SONG Yu-hang Qingdao Campus, Naval Aviation University, Shandong Qingdao 266041, China 
GUAN Yu Shenyang Aircraft Design Institute, China Aviation Industry Group Co., Ltd., Shenyang 110031, China 
ZHANG Tai-feng Qingdao Campus, Naval Aviation University, Shandong Qingdao 266041, China 
YANG Wen-fei Qingdao Campus, Naval Aviation University, Shandong Qingdao 266041, China 
摘要点击次数:
全文下载次数:
中文摘要:
      目的 加强对7B04铝合金和TC16钛合金之间电偶腐蚀规律的认识,为特定海洋大气环境下服役的飞机在腐蚀防护方面提供指导。方法 在模拟海洋大气环境下,对用钛合金铆钉铆接的7B04铝–7B04铝搭接件和极化试件进行10周期加速腐蚀试验,通过PARSTAT 4000电化学工作站测量2种合金加速腐蚀0、10周期后的极化曲线,并以测得的电化学参数为边界条件,利用COMSOL对搭接件进行数值模拟仿真,从而与试验结果进行对比分析;通过疲劳试验得到搭接件加速腐蚀4、6、8、10周期后的疲劳寿命;利用光学显微镜观察腐蚀微观形貌并进行疲劳断口附近的腐蚀坑深度测量;借助X射线衍射仪分析铝合金的腐蚀产物成分。结果 在加速腐蚀0周期和10周期后,铝合金的自腐蚀电位和自腐蚀电流密度分别为−802 mV和−872 mV,2.357×107 A/cm2和1.477×106 A/cm2,钛合金则分别为−313 mV和−274 mV,1.638×108 A/cm2和4.144×108 A/cm2。疲劳断口位置和腐蚀最严重区域与数值模拟仿真电位差最大位置一致,随着腐蚀周期的延长,腐蚀越来越严重,腐蚀坑深度逐渐增大。结论 2种合金之间发生电偶腐蚀,7B04铝合金作为阳极发生腐蚀,并随着腐蚀周期的延长自腐蚀电位负移,腐蚀速率增大;TC16钛合金作为阴极,随着腐蚀周期的延长自腐蚀电位正移;XRD图谱显示铝合金腐蚀产物的成分主要为Al(OH)3、Al2O3;数值模拟仿真的结果与试验结果一致;飞机新结构设计和旧结构维护要重点关注铆钉周围,避免疲劳失效。
英文摘要:
      This paper aims to strengthen the knowledge of galvanic corrosion between 7B04 aluminium alloy and TC16 titanium and provide guidance on corrosion protection for aircraft in service under specific marine atmospheric environment. The 10-cycle accelerated corrosion test of 7B04 Aluminium-7B04 aluminium lap joints riveted with titanium alloy rivets and polarization test pieces were carried out in simulated marine atmospheric environment. Polarization curves of two alloys after 0 cycle and 10 cycles were measured by PARSTAT 4000 electrochemical workstation. Its results were used as boundary conditions for COMSOL numerical simulation to contrast with test results. Fatigue life of lap joints after 4, 6, 8 and 10 cycles of accelerated corrosion test were obtained by fatigue test. Observation of corrosion morphology and measurement of corrosion pit depth near fatigue fracture were got by using optical microscope. Using XRD to analysis corrosion products of aluminium alloy so as to reveal whether the corrosion mechanism has changed. Through a variety of characterization test results, the galvanic corrosion between 7B04 aluminum alloy and TC16 Titanium alloy is explained from different angles. Coupled with the comparative analysis with the numerical simulation results, the reliability and accuracy of the test results are ensured. After 0 cycles and 10 cycles of the accelerated corrosion test, the self-corrosion potential and self-corrosion current density of aluminium alloy are −802 mV and −872 mV, 2.357×10−7 A/cm2 and 1.477×10−6 A/cm2, respectively, while those of titanium alloy are respectively −313 mV and −274 mV, 1.638×10−8 A/cm2 and 4.144×10−8 A/cm2. The location of the fatigue fracture is consistent with the most severely corroded area and the largest potential difference in numerical simulation. With the extension of the corrosion cycle, the corrosion becomes more and more serious, and the depth of the corrosion pit gradually increases. Galvanic corrosion occurs between the two alloys. 7B04 aluminium alloy corrodes as the anode, and with the extension of the corrosion cycle, the corrosion potential is negatively shifted, and the corrosion rate increases; TC16 titanium alloy is used as the cathode, and the corrosion potential is positively shifted with the extension of the corrosion cycle. XRD spectrums show that the main components of aluminium alloy corrosion products are Al(OH)3, Al2O3; XRD results show that the corrosion mechanism of 7B04 aluminum alloy in 0-10 cycle has not changed, and with the progress of corrosion, a large number of corrosion products wrap the aluminum alloy surface, resulting in the slow growth rate of corrosion pit depth, indicating that the uniform corrosion layer on the surface has a certain protective function, which will reduce the pitting corrosion sensitivity of the aluminum alloy surface. The numerical simulation results are consistent with the experimental results. Through the comprehensive analysis of corrosion morphology and numerical simulation results, the action range of galvanic corrosion is found out. In addition to the internal corrosion of the screw hole, the maximum range is about a circular area 2 mm larger than the radius of the screw hole. Aircraft new structure design and old structure maintenance should focus on rivets around to avoid fatigue failure.
查看全文  查看/发表评论  下载PDF阅读器
关闭

关于我们 | 联系我们 | 投诉建议 | 隐私保护 | 用户协议

您是第20079282位访问者    渝ICP备15012534号-3

版权所有:《表面技术》编辑部 2014 surface-techj.com, All Rights Reserved

邮编:400039 电话:023-68792193传真:023-68792396 Email: bmjs@surface-techj.com

渝公网安备 50010702501715号