于晓,王优强,张平,宋爱利,徐创文.7N01铝合金高速斜角切削过程中的切屑演化机理[J].表面技术,2022,51(3):167-177.
YU Xiao,WANG You-qiang,ZHANG Ping,SONG Ai-li,XU Chuang-wen.Chip Evolution Mechanism in High Speed Oblique Cutting of 7N01 Aluminium Alloy[J].Surface Technology,2022,51(3):167-177
7N01铝合金高速斜角切削过程中的切屑演化机理
Chip Evolution Mechanism in High Speed Oblique Cutting of 7N01 Aluminium Alloy
投稿时间:2021-03-11  修订日期:2021-08-19
DOI:10.16490/j.cnki.issn.1001-3660.2022.03.017
中文关键词:  7N01铝合金  斜角切削  切屑形态  热力耦合
英文关键词:7N01 aluminum alloy  oblique cutting  chip shape  thermal-mechanical coupling
基金项目:国家自然科学基金(51575289);山东省自然科学基金(ZR2019PEE028);山东省重点研发计划(2019GHY112068)
作者单位
于晓 青岛理工大学 机械与汽车工程学院,山东 青岛 266525 
王优强 青岛理工大学 机械与汽车工程学院,山东 青岛 266525 
张平 山东科技大学 机械电子工程学院,山东 青岛 266590 
宋爱利 青岛黄海学院 智能制造学院,山东 青岛 266427 
徐创文 青岛黄海学院 智能制造学院,山东 青岛 266427 
AuthorInstitution
YU Xiao School of Mechanical and Automotive Engineering, Qingdao University of Technology, Qingdao 266525, China 
WANG You-qiang School of Mechanical and Automotive Engineering, Qingdao University of Technology, Qingdao 266525, China 
ZHANG Ping School of Mechanical and Electronic Engineering, Shandong University of Science and Technology, Qingdao 266590, China 
SONG Ai-li School of Intelligent Manufacturing, Qingdao Huanghai University, Qingdao 266427, China 
XU Chuang-wen School of Intelligent Manufacturing, Qingdao Huanghai University, Qingdao 266427, China 
摘要点击次数:
全文下载次数:
中文摘要:
      目的 研究高强铝合金高速斜角切削参数对切屑形态及演化规律的影响,探究切屑形态转变的内在机理,为延长刀具使用寿命、改进加工工艺提供理论依据。方法 基于通用有限元软件建立7N01铝合金高速斜角切削三维数值模型,利用加工中心、三向测力仪进行切削试验,通过金相显微镜和扫描电子显微镜对切屑形貌进行表征,结合有限元仿真结果,探明切屑演化机理。结果 在刃倾角为15°、切深为2 mm及进给量为0.9 mm/z的切削参数下,当切削速度低于900 m/min时,切屑宽度方向首先与刀刃接触的一侧有较为明显的撕裂或出现边缘锯齿状毛边现象,此时切削力波动剧烈,结合撕裂区微观组织和有限元分析,发现该侧应力和温度水平明显高于另一侧,循环拉-压塑性变形是导致切屑锯齿状毛边的主导因素。当切削速度高于700 m/min时,材料的热软化效应增强,绝热剪切带来的热塑性剪切失稳占据主导作用,切屑边缘锯齿状毛边逐渐消失,沿切屑的厚度方向出现了明显的绝热剪切带,即形成了锯齿状切屑,并且锯齿化程度随着切削速度的提高而加剧。结论 斜角切削时,切屑形态会随着切削速度的变化而发生转变,切削加工中的热-力耦合作用是切屑演化的主要原因,2种锯齿状切屑均会带来切削力的波动,影响表面质量,在实际切削加工过程中要尽量避免。
英文摘要:
      The work aims to study the effects of high-speed oblique cutting parameters on chip morphology and evolution law of high-strength aluminum alloy, and explore the internal mechanism of chip morphology transformation, so as to provide theoretical basis for extending tool life and improving processing technology. In this paper, a three-dimensional numerical model of 7N01 aluminum alloy high-speed oblique cutting was established based on the general finite element software. The cutting experiments were carried out with machining center and three-dimensional dynamometer. The chip morphology was characterized by metallographic microscope and scanning electron microscope. Combined with the finite element simulation results, the chip evolution mechanism was explored. The results showed that, under the condition of 15° blade inclination, 2 mm cutting depth and 0.9 mm/z feed, when cutting speed was lower than 900 m/min, there was obvious tearing or serrated edge phenomenon on the side contacting with the tip first in the width direction of chip. At this time, the cutting force wave was violent. Combined with the microstructure and finite element analysis, it was found that the stress and temperature level of this side was significantly higher than that of the other side, and the cyclic tension compression plastic deformation was the main factor leading to chip serrated burr. When the cutting speed was higher than 700 m/min, the thermal softening effect was enhanced, and the thermoplastic shear instability caused by adiabatic shear played a leading role. The serrated edge gradually disappeared, and an obvious adiabatic shear band appeared along the chip thickness direction, that was, serrated chips were formed, and the degree of serration increased with the increase of cutting speed. In oblique cutting, chip shape will change with the change of cutting speed. The thermal mechanical coupling is the main reason for chip evolution. The two kinds of serrated chips will bring the fluctuation of cutting force and affect the surface quality, which should be avoided as far as possible in the actual cutting process.
查看全文  查看/发表评论  下载PDF阅读器
关闭

关于我们 | 联系我们 | 投诉建议 | 隐私保护 | 用户协议

您是第19889576位访问者    渝ICP备15012534号-3

版权所有:《表面技术》编辑部 2014 surface-techj.com, All Rights Reserved

邮编:400039 电话:023-68792193传真:023-68792396 Email: bmjs@surface-techj.com

渝公网安备 50010702501715号