戴双武,卢艳,高友明,李扬帆.非对称通道内亲疏水结构影响下的纳米气泡滑移效应[J].表面技术,2022,51(2):202-210.
DAI Shuang-wu,LU Yan,GAO You-ming,LI Yang-fan.Slip Effect of Nanobubbles under the Influence of Hydrophilic and Hydrophobic Structures in Asymmetric Channels[J].Surface Technology,2022,51(2):202-210
非对称通道内亲疏水结构影响下的纳米气泡滑移效应
Slip Effect of Nanobubbles under the Influence of Hydrophilic and Hydrophobic Structures in Asymmetric Channels
投稿时间:2021-03-16  修订日期:2021-07-05
DOI:10.16490/j.cnki.issn.1001-3660.2022.02.019
中文关键词:  微通道  温度阶跃  速度滑移  纳米气泡  滑移减阻  润湿性
英文关键词:microchannel  temperature step  velocity slip  nanobubbles  slip drag reduction  wettability
基金项目:国家自然科学基金(51875417,51975425)
作者单位
戴双武 武汉科技大学 冶金装备及其控制教育部重点实验室 武汉科技大学机械传动与制造工程湖北省重点实验室,武汉 430081 
卢艳 武汉科技大学 冶金装备及其控制教育部重点实验室 武汉科技大学机械传动与制造工程湖北省重点实验室,武汉 430081 
高友明 武汉科技大学 冶金装备及其控制教育部重点实验室 武汉科技大学机械传动与制造工程湖北省重点实验室,武汉 430081 
李扬帆 武汉科技大学 冶金装备及其控制教育部重点实验室 武汉科技大学机械传动与制造工程湖北省重点实验室,武汉 430081 
AuthorInstitution
DAI Shuang-wu Key Laboratory of Metallurgical Equipment and Control Technology of Ministry of Education, Key Laboratory of Mechanical Transmission and Manufacturing Engineering, Wuhan University of Science and Technology, Wuhan 430081, China 
LU Yan Key Laboratory of Metallurgical Equipment and Control Technology of Ministry of Education, Key Laboratory of Mechanical Transmission and Manufacturing Engineering, Wuhan University of Science and Technology, Wuhan 430081, China 
GAO You-ming Key Laboratory of Metallurgical Equipment and Control Technology of Ministry of Education, Key Laboratory of Mechanical Transmission and Manufacturing Engineering, Wuhan University of Science and Technology, Wuhan 430081, China 
LI Yang-fan Key Laboratory of Metallurgical Equipment and Control Technology of Ministry of Education, Key Laboratory of Mechanical Transmission and Manufacturing Engineering, Wuhan University of Science and Technology, Wuhan 430081, China 
摘要点击次数:
全文下载次数:
中文摘要:
      目的 研究非对称性通道中亲疏水表面结构影响下纳米气泡特征与边界滑移之间的关系,以实现良好的流体减阻效果。方法 采用二元体系分子动力学方法,研究纳米气泡在通道流动中产生的滑移减阻效应。首先建立上下壁面非对称微通道模型,通过考虑微通道流动传热过程,探究纳米气泡影响下的微通道界面速度滑移现象。结果 保持亲水下壁面高度以及上下壁面温差不变的情况下,增加上壁面纳米结构高度,对通道中纳米气泡体积产生促进作用。另外,当上壁面为疏水壁面时,气泡呈现为壁面形式,并且随着体积增大,相对应通道中上壁面滑移长度增大;当上壁面为亲水壁面时,纳米气泡呈现为体相形式,并且随着体积增大,对应上壁面滑移长度减小。结论 非对称性通道内,在上壁面结构高度影响下,壁面形式的气泡体积增大对通道内减阻具有促进作用,而体相形式的气泡体积增大对通道内减阻具有抑制作用。
英文摘要:
      The purpose of this paper is to achieve a good fluid drag reduction effect by studying the relationship between the characteristics of nanobubbles and boundary slip under the influence of hydrophilic and hydrophobic surface structures in asymmetric channels. In this paper, the binary system molecular dynamics method is used to study the slip drag reduction effect of nanobubbles flowing in the channel. Firstly, the asymmetric microchannel model on the upper and lower walls is established, and the microchannel interface velocity slip phenomenon under the influence of nanobubbles is explored by considering the flow and heat transfer process of the microchannel. The simulation results show that when keeping the height of the hydrophilic lower wall and the temperature difference between the upper and lower walls unchanged, the increase in the height of the nanostructures on the upper wall promotes the volume increase of nanobubbles in the channel; in addition, when the upper wall is a hydrophobic wall, the nanobubbles appear in the form of a wall surface. As the volume increases, the slip length of the upper wall in the corresponding channel increases; when the upper wall is a hydrophilic wall, the nanobubbles are in bulk form, and as the volume increases, the corresponding upper wall’s slip length is reduced. In an asymmetrical channel, under the influence of the height of the upper wall structure, the increase of the nanobubble volume in the form of a wall surface promotes the drag reduction in the channel, while the increase of the nanobubble volume in the bulk form inhibits the drag reduction in the channel. Therefore, the research results in this paper provide a theoretical basis for exploring the application of nanobubble engineering in drag reduction.
查看全文  查看/发表评论  下载PDF阅读器
关闭

关于我们 | 联系我们 | 投诉建议 | 隐私保护 | 用户协议

您是第20079869位访问者    渝ICP备15012534号-3

版权所有:《表面技术》编辑部 2014 surface-techj.com, All Rights Reserved

邮编:400039 电话:023-68792193传真:023-68792396 Email: bmjs@surface-techj.com

渝公网安备 50010702501715号