王北川,陈利.Al含量对TiAlN涂层结构及性能的影响[J].表面技术,2022,51(2):29-38.
WANG Bei-chuan,CHEN Li.Effect of Al Content on Microstructure and Properties of TiAlN Coatings[J].Surface Technology,2022,51(2):29-38
Al含量对TiAlN涂层结构及性能的影响
Effect of Al Content on Microstructure and Properties of TiAlN Coatings
投稿时间:2021-11-29  修订日期:2022-01-14
DOI:10.16490/j.cnki.issn.1001-3660.2022.02.003
中文关键词:  TiAlN涂层  硬度  热稳定性  抗氧化性能  耐腐蚀性能
英文关键词:TiAlN  hardness  thermal stability  oxidation resistance  corrosion resistance
基金项目:国家自然科学基金(51775560)
作者单位
王北川 中南大学 粉末冶金国家重点实验室,长沙 410083 
陈利 中南大学 粉末冶金国家重点实验室,长沙 410083;株洲钻石切削刀具股份有限公司,湖南 株洲 412007 
AuthorInstitution
WANG Bei-chuan State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, China 
CHEN Li State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, China;Zhuzhou Cemented Carbide Cutting Tools Co., Ltd., Zhuzhou 412007, China 
摘要点击次数:
全文下载次数:
中文摘要:
      目的 系统研究Al含量对TiAlN涂层结构以及硬度、热稳定性、抗氧化性能和耐腐蚀性能的影响。方法 利用阴极弧蒸发技术,采用Ti、Ti50Al50、Ti40Al60和Ti33Al67靶材制备出4种Ti1‒xAlxN涂层。分别利用能量色散X射线光谱仪(EDX)、X射线衍射仪(XRD)、扫描电镜(SEM)、纳米压痕仪、热重分析仪(TGA)和以及电化学工作站,分析了涂层的成分、微观结构、力学性能、热稳定性、抗氧化性和耐蚀性。结果 4种Ti1‒xAlxN涂层均为面心立方结构,硬度由TiN的~26.4 GPa上升到Ti0.38Al0.62N的~32.7 GPa。Ti0.55Al0.45N和Ti0.44Al0.56N涂层在1100 ℃退火后,可检测到六方铅锌矿结构(w-)AlN相,而Ti0.38Al0.62N涂层在1000 ℃退火后便可检测到w-AlN相。Ti0.55Al0.45N和Ti0.44Al0.56N涂层的硬度在900 ℃退火后达到最高值,分别为~32.8 GPa和~33.3 GPa;而Ti0.38Al0.62N涂层的硬度在800 ℃时达到最高值,为~36.2 GPa。在800 ℃氧化20 h后,TiN已经被完全氧化,Ti0.55Al0.45N、Ti0.44Al0.56N和Ti0.38Al0.62N的氧化层厚度分别为~3.5、~0.6、~0.6 μm。Ti0.55Al0.45N、Ti0.44Al0.56N、Ti0.38Al0.62N在抛物线氧化阶段的氧化激活能分别为530.9、370、375.9 kJ/mol。TiN、Ti0.55Al0.45N、Ti0.44Al0.56N、Ti0.38Al0.62N涂层的极化电阻分别为4.59×104、1.97×103、3.71×103、4.42× 104Ω·cm2。结论 x<0.62时,涂层保持单相立方结构,且晶格常数和晶粒尺寸随Al含量的增加而减小。Al含量的提高优化了TiAlN涂层的力学性能,促进了涂层的热分解。Ti0.44Al0.56N涂层具有最优的抗氧化性能。另外,Al的加入降低了TiN涂层的抗腐蚀性能,但是含Al涂层的抗腐蚀性随Al含量的增加而增大。
英文摘要:
      To investigate the effect of Al content on structure as well as mechanical properties, thermal stability, oxidation resistance and corrosion resistance of TiAlN coating completely, we deposited 4 Ti1‒xAlxN coatings by cathodic arc evaporation on Ti, Ti50Al50, Ti40Al60 and Ti33Al67 targets. The composition, structure, mechanical properties, thermal stability, oxidation resistance and corrosion resistance of Ti1‒xAlxN coatings were studied in detail by energy-dispersive X-ray spectrometer (EDX), X-ray diffraction, scanning electron microscopy (SEM) with, nanoindentation, thermal gravimetric analyzer (TGA) and electrochemical workstation. All Ti1‒xAlxN coatings exhibit a face-centered cubic (fcc-) structure. With the increase of Al content, the hardness values of Ti1‒xAlxN continue to increase from ~26.4 GPa of TiN to ~32.7 GPa of Ti0.38Al0.62N. We detected the wurtzite (w-) AlN phase in Ti0.55Al0.45N and Ti0.44Al0.56N after annealing at 1100 ℃, however, in Ti0.38Al0.62N decrease to 1000 ℃. During the annealing process, the Ti0.55Al0.45N and Ti0.44Al0.56N show the highest hardness of ~32.8 GPa and ~33.3 GPa after annealing at 900 ℃ respectively, and Ti0.38Al0.62N exhibits the highest hardness of ~36.2 GPa at 800 ℃. After oxidation at 800 ℃ for 20 h, the TiN coating has been completely oxidized, while the oxide layer thicknesses of Ti0.55Al0.45N, Ti0.44Al0.56N and Ti0.38Al0.62N coatings were ~3.5 μm, ~0.6 μm and ~0.6 μm, respectively. In addition, the oxidation activation energies of Ti0.55Al0.45N, Ti0.44Al0.56N and Ti0.38Al0.62N in parabolic oxidation stage are 530.9 kJ/mol, 370 kJ/mol and 375.9 kJ/mol, severally. The last, the polarization resistance of TiN, Ti0.55Al0.45N, Ti0.44Al0.56N and Ti0.38Al0.62N is 4.59× 104Ω·cm2, 1.97×103 Ω·cm2, 3.71×103 Ω·cm2 and 4.42×104 Ω·cm2, respectively. In summary, within x<0.62, the coating maintains a single-phase cubic structure. With the increase of Al content, the lattice constant and grain size are reduced, the hardness values of Ti1‒xAlxN continue is increased, and thermal decomposition is promoted. Ti0.44Al0.56N coatings have the best oxidation resistance. In addition, the introduction of Al reduces the corrosion resistance of the TiN coating, but the corrosion resistance of Al-containing coatings increases with increasing Al content.
查看全文  查看/发表评论  下载PDF阅读器
关闭

关于我们 | 联系我们 | 投诉建议 | 隐私保护 | 用户协议

您是第20117631位访问者    渝ICP备15012534号-3

版权所有:《表面技术》编辑部 2014 surface-techj.com, All Rights Reserved

邮编:400039 电话:023-68792193传真:023-68792396 Email: bmjs@surface-techj.com

渝公网安备 50010702501715号