王嘉乐,王越锋,左雨欣,刘宜胜,左春柽,于影.静电纺丝制备铝-空气电池阳极防腐薄膜[J].表面技术,2021,50(12):364-371.
WANG Jia-le,WANG Yue-feng,ZUO Yu-xin,LIU Yi-sheng,ZUO Chun-cheng,YU Ying.Preparation of Anti-corrosion Film for Al-AirBattery Anode by Electrospinning[J].Surface Technology,2021,50(12):364-371
静电纺丝制备铝-空气电池阳极防腐薄膜
Preparation of Anti-corrosion Film for Al-AirBattery Anode by Electrospinning
投稿时间:2020-12-17  修订日期:2021-05-07
DOI:10.16490/j.cnki.issn.1001-3660.2021.12.036
中文关键词:  静电纺丝  氧化锌  防腐蚀薄膜  铝阳极  铝-空气电池  比容量
英文关键词:electrospinning  ZnO  anti-corrosion film  Al anode  Al-air battery  specific capacity
基金项目:浙江省自然科学基金项目(LGG21E050021,LQ20E040007);国家自然科学基金项目(11802102,51775242);嘉兴市应用性基础研究专项(2019AY11019,2020AY10015)
作者单位
王嘉乐 浙江理工大学 机械与自动控制学院,杭州 310018 
王越锋 浙江理工大学 机械与自动控制学院,杭州 310018 
左雨欣 嘉兴学院 设计学院,浙江 嘉兴 314000 
刘宜胜 浙江理工大学 机械与自动控制学院,杭州 310018 
左春柽 嘉兴学院 机械工程学院,浙江 嘉兴 314000 
于影 嘉兴学院 机械工程学院,浙江 嘉兴 314000 
AuthorInstitution
WANG Jia-le School of Mechanical Engineering and Automation, Zhejiang Sci-Tech University, Hangzhou 310018, China 
WANG Yue-feng School of Mechanical Engineering and Automation, Zhejiang Sci-Tech University, Hangzhou 310018, China 
ZUO Yu-xin School of Design,Jiaxing 314000, China 
LIU Yi-sheng School of Mechanical Engineering and Automation, Zhejiang Sci-Tech University, Hangzhou 310018, China 
ZUO Chun-cheng School of Mechanical Engineering, Jiaxing University, Jiaxing 314000, China 
YU Ying School of Mechanical Engineering, Jiaxing University, Jiaxing 314000, China 
摘要点击次数:
全文下载次数:
中文摘要:
      目的 研究氧化锌高效防腐薄膜的制备方法及防腐性能,并应用于铝-空气电池,探究薄膜厚度及孔隙率对电池比容量及放电性能的影响。方法 基于静电纺丝方法,制备氧化锌防腐蚀薄膜,采用Zn(NO3)2.6H2O和PAN的混合溶液作为前驱体溶液,在阳极基板上纺丝,经热处理得到氧化锌薄膜。采用XRD、SEM和XPS进行表面形貌表征及化学组成分析,借助电化学工作站和电池测试系统,分析电化学腐蚀行为和放电特性。结果 氧化锌防腐蚀薄膜能够有效抑制铝阳极表面的自腐蚀行为,其腐蚀抑制率受防腐蚀薄膜厚度及孔隙率的影响,腐蚀抑制率随薄膜厚度的增加和孔隙率的减小而增大。8 μm氧化锌防腐蚀薄膜的腐蚀抑制率可达87.55%,相比于纯铝阳极铝-空气电池,电池比容量可提高3倍以上。对于小功率密度放电,较厚的防腐蚀薄膜能够提高电池比容量,且不影响电池本身的放电特性;对于较大功率密度放电,须控制薄膜厚度,以达到较好的放电效果。结论 静电纺丝可有效制备抑制铝阳极析氢自腐蚀的氧化锌防腐蚀薄膜,应用于铝-空气电池中,可以显著延长放电时间,提高电池比容量。
英文摘要:
      The work aims to study the preparation and corrosion performance of ZnO anti-corrosion film, and apply it to Al-air batteries to explore the influence of the thickness and porosity on specific capacity and discharge performance. The ZnO films were prepared by electrospinning. The mixed solution of Zn(NO3)2.6H2O and PAN was used as the precursor solution and spun on the anode substrate. After heat treatment, the PAN in the fiber was decomposed and the Zn(NO3)2.6H2O was transformed. Finally, the ZnO film was obtained. The surface morphology and chemical composition were characterized by XRD, SEM and XPS. The electrochemical corrosion behavior and discharge performance were analyzed by electrochemical workstation and battery test system. The results show that the ZnO anti-corrosive film can effectively inhibit the surface self-corrosion of Al anode. The corrosion inhibition rate is affected by the thickness and porosity of the films. The corrosion inhibition rate increases with the increase of film thickness and the decrease of porosity. The corrosion inhibition rate of 8 μm ZnO anti-corrosive films can reach up to 87.55%. Compared with the Al-air battery with pure Al anode, the specific capacity of the battery with ZnO anti-corrosion film can be increased by more than 3 times. For small power density discharge, thicker anti-corrosive films can improve the specific capacity of the battery without affecting the discharge performance. For higher power density discharge, the thickness of the film must be controlled to achieve a better discharge performance. Therefore, the ZnO anti-corrosive film which can inhibit the hydrogen evolution of Al anode is prepared by electrospinning. It can be used in Al-air batteries to extend the discharge time and improve the specific capacity of the batteries. This technology could also be applied to the corrosion protection of metals in alkaline solutions.
查看全文  查看/发表评论  下载PDF阅读器
关闭

关于我们 | 联系我们 | 投诉建议 | 隐私保护 | 用户协议

您是第20096012位访问者    渝ICP备15012534号-3

版权所有:《表面技术》编辑部 2014 surface-techj.com, All Rights Reserved

邮编:400039 电话:023-68792193传真:023-68792396 Email: bmjs@surface-techj.com

渝公网安备 50010702501715号