邹龙庆,黄聪聪,付海龙,王玥.表面粗糙峰坐标点云重构的金属-橡胶接触分析[J].表面技术,2021,50(10):255-262.
ZOU Long-qing,HUANG Cong-cong,FU Hai-long,WANG Yue.Metal-Rubber Rigid Soft Contact Analysis Based on Gaussian Rough Surface[J].Surface Technology,2021,50(10):255-262
表面粗糙峰坐标点云重构的金属-橡胶接触分析
Metal-Rubber Rigid Soft Contact Analysis Based on Gaussian Rough Surface
投稿时间:2020-11-30  修订日期:2021-04-13
DOI:10.16490/j.cnki.issn.1001-3660.2021.10.025
中文关键词:  粗糙表面重构  刚柔接触  接触面积  接触状态  磨损  橡胶
英文关键词:rough surface reconstruction  rigid and soft contact  contact area  contact state  wear  rubber
基金项目:东北石油大学国家自然基金培育基金重点项目(2017PYZL-04);黑龙江省留学归国人才资助项目(2019-277)
作者单位
邹龙庆 东北石油大学 机械科学与工程学院,黑龙江 大庆 163318 
黄聪聪 东北石油大学 机械科学与工程学院,黑龙江 大庆 163318 
付海龙 东北石油大学 机械科学与工程学院,黑龙江 大庆 163318;东北石油大学 环渤海能源研究院,河北 秦皇岛 066004 
王玥 东北石油大学 机械科学与工程学院,黑龙江 大庆 163318 
AuthorInstitution
ZOU Long-qing College of Mechanical Science and Engineering, Northeast Petroleum University, Daqing 163318, China 
HUANG Cong-cong College of Mechanical Science and Engineering, Northeast Petroleum University, Daqing 163318, China 
FU Hai-long College of Mechanical Science and Engineering, Northeast Petroleum University, Daqing 163318, China;Bohai Rim Energy Research Institute, Northeast Petroleum University, Qinhuangdao 066004, China 
WANG Yue College of Mechanical Science and Engineering, Northeast Petroleum University, Daqing 163318, China 
摘要点击次数:
全文下载次数:
中文摘要:
      目的 通过金属-橡胶微观接触面粗糙峰坐标点云重构,建立外部载荷与接触面积、微观接触状态之间的联系。方法 基于粗糙表面的自相关函数和高斯分布函数,获得金属-橡胶粗糙接触面数据点云坐标,利用ANSYS APDL方法,建立金属-橡胶接触模型,对两种表面粗糙度(分别为1.6 μm和3.2 μm)的4种接触情形进行有限元接触分析,确定模型的可靠性。结果 随着外部载荷的增加,经数据点云重构后的粗糙表面,其接触面积呈非线性增加。载荷较小时,外加载荷每增加0.1 MPa,接触面积增加约6%;大载荷时,外加载荷每增加0.1 MPa,接触面积增加约1.5%。接触状态中,滑移占比为12%左右,近场和粘着呈完全相反的变化趋势。结论 随着外加载荷的增加,界面的真实接触面积呈幂指关系增加。同一载荷下,真实接触面积随表面粗糙度的增加而减小;随着外加载荷的增加,界面间的接触状态由近场接触向粘着接触转变。接触面积和粘着状态是界面间磨损粒子的分布范围和大小的确定因素,对于准确描述载荷传递和随之发生的磨损过程有着重要意义。根据橡胶表面的应力分布和变形情况,解释了粘着接触状态促使橡胶一侧微凸体脱落成为磨损颗粒,证明磨粒磨损是刚柔接触界面的主要磨损形式。
英文摘要:
      The purpose of this study is to establish the relationship between the macroscopic contact area and the microscopic contact state through the reconstruction of the rough peak coordinate point cloud of the metal-rubber microcontact surface. Based on the autocorrelation function and Gaussian distribution function of rough surface, the data point cloud coordinates of rubber-metal rough contact surface were obtained. ANSYS APDL method was used to establish the metal-rubber contact model, and the reliability of the model was determined through the finite element contact analysis of Ra is 1.6 μm and 3.2 μm, two surface roughness and four contact situations. The contact area of the rough surface reconstructed by the data point cloud increased non-linearly with the increase of external load. When the load was small, the contact area increased by about 6% when the external load increases by 0.1 MPa. When the load was large, the contact area increased by about 1.5% when the external load increased by 0.1 MPa. In the contact state, the slippage accounted for about 12%, and the near field and adhesion showed a completely opposite trend. With the increase of external load, the real contact area of the interface increases nonlinearly. Under the same load, the real contact area decreases with the increase of surface roughness. With the increase of external load, the contact state between interfaces changed from near-field contact to adhesive contact. Contact area and adhesion state are the determining factors of the distribution range and size of interfacial wear particles, which is of great significance to accurately describe the load transfer and subsequent wear process. According to the stress distribution and deformation of rubber surface, it is explained that the adhesive contact state causes the rubber side of the micro-bulge to fall off into wear particles, and it is proved that abrasive wear is the main wear form of rigid and flexible contact interface.
查看全文  查看/发表评论  下载PDF阅读器
关闭

关于我们 | 联系我们 | 投诉建议 | 隐私保护 | 用户协议

您是第20027166位访问者    渝ICP备15012534号-3

版权所有:《表面技术》编辑部 2014 surface-techj.com, All Rights Reserved

邮编:400039 电话:023-68792193传真:023-68792396 Email: bmjs@surface-techj.com

渝公网安备 50010702501715号