刘洋,张辉,周彬,董光能.仿生亲水微轨道-超疏水复合表面液滴可控定向引导研究[J].表面技术,2021,50(10):57-65.
LIU Yang,ZHANG Hui,ZHOU Bin,DONG Guang-neng.A Research of Bionic Hydrophilic Micro-track on Superhydrophobic Surface for Guiding Droplets’ Directional Transportation[J].Surface Technology,2021,50(10):57-65
仿生亲水微轨道-超疏水复合表面液滴可控定向引导研究
A Research of Bionic Hydrophilic Micro-track on Superhydrophobic Surface for Guiding Droplets’ Directional Transportation
投稿时间:2021-06-23  修订日期:2021-09-03
DOI:10.16490/j.cnki.issn.1001-3660.2021.10.006
中文关键词:  超疏水表面  亲水微轨道  纳秒激光  各向异性润湿  定向引导  预润湿
英文关键词:superhydrophobic surface  hydrophilic micro-tracks  nanosecond laser  anisotropic wetting  directional guidance  pre wetting
基金项目:
作者单位
刘洋 西安交通大学 现代设计及转子轴承系统教育部重点实验室,西安 710049 
张辉 西安交通大学 现代设计及转子轴承系统教育部重点实验室,西安 710049 
周彬 陕西汉德车桥有限公司,西安 710201 
董光能 西安交通大学 现代设计及转子轴承系统教育部重点实验室,西安 710049 
AuthorInstitution
LIU Yang Key Laboratory of Education Ministry for Modern Design and Rotor-Bearing System, Xi’an Jiaotong University, Xi’an 710049, China 
ZHANG Hui Key Laboratory of Education Ministry for Modern Design and Rotor-Bearing System, Xi’an Jiaotong University, Xi’an 710049, China 
ZHOU Bin Shaanxi Hande Axle Co., Ltd., Xi’an 710201, China 
DONG Guang-neng Key Laboratory of Education Ministry for Modern Design and Rotor-Bearing System, Xi’an Jiaotong University, Xi’an 710049, China 
摘要点击次数:
全文下载次数:
中文摘要:
      目的 实现液滴在超疏水表面定向可控滑动。方法 通过一种简单而有效的方法制备复合仿水稻叶亲水微轨道的超疏水表面。首先使用NaOH腐蚀铝合金表面形成微纳结构,然后浸泡硬脂酸溶液使得粗糙表面自生长硬脂酸超疏水层,最后使用纳秒激光系统去除局部超疏水层,形成用于引导液滴的仿水稻叶微轨道。利用超疏水表面的超强憎水特性及亲水微轨道的亲水性,得到水滴运动各向异性的微结构化表面。通过优化微轨道参数,改变液滴各向异性润湿及滑动特性。结果 随着相邻亲水微轨道间隔的减小,平行微轨道方向接触角也明显减小,液滴沿轨道方向的滑动阻力明显增加。当相邻微轨道间距为500 μm时,达到平行亲水微轨道方向和垂直亲水微轨道方向滑动角的差值超过50°,为液滴可控定向引导最佳间距。进一步提出了具有变密度亲水微轨道和曲线排列亲水微轨道的超疏水表面,其具有在特定单方向液滴可控引导的特性,并引导水滴沿微轨道聚集到亲水末端点。通过机理分析得出,液滴在复合表面的各向异性润湿和定向滑动,是由于超疏水表面和亲水微轨道之间的表面能性质差异,以及毛细作用引起的预润湿效应等。结论 本研究制备的复合亲水微轨道超疏水表面可实现液滴定向引导,在集水、水滴混合及污渍去除等领域具有应用潜力。
英文摘要:
      To achieve guiding droplets’ directional transportation on superhydrophobic surfaces, a simple and effective method was employed to prepare the superhydrophobic surface and rice leaf biomimetic hydrophilic micro-tracks. Firstly, NaOH solution was used to corrode the aluminum alloy surface to form a micro and nano structure. Then the aluminum alloy was soaked in stearic acid solution to make the superhydrophobic layer self-grow on the rough surface. Finally, a nanosecond laser system was used to remove the partial superhydrophobic layer to form rice leaf biomimetic micro-tracks for guiding the droplets. An anisotropic wetting surface was obtained using the superhydrophobicity of the superhydrophobic surface and the hydrophilicity of the hydrophilic micro-tracks. The anisotropic wetting and sliding characteristics of the droplets were changed by optimizing the parameters of micro-tracks.As the spacing distance between adjacent hydrophilic micro-tracks decreased, the contact angle in the parallel micro-tracks’ direction was significantly reduced, while the sliding resistance of the droplet along the micro-tracks path was increased. When the spacing distance between adjacent micro-tracks was 500 μm, the difference of two direction maximum sliding angle came to 50°, which was the best spacing distance for guiding directional droplet transportation. A superhydrophobic surface with variable density hydrophilic micro-tracks and curvilinear hydrophilic micro-tracks was further proposed. It was for guiding the droplets to gather along the micro-tracks to the hydrophilic endpoints. Through anisotropic sliding analysis, it was found that the anisotropic wetting and directional sliding of the droplets on the composite surface were due to the difference in surface energy properties and the pre-wetting effect caused by capillary action.The superhydrophobic surface composite hydrophilic micro-tracks for guiding directional droplet transport reported in this study has application potential in the fields of water collection, water drop mixing stain removal and etc.
查看全文  查看/发表评论  下载PDF阅读器
关闭

关于我们 | 联系我们 | 投诉建议 | 隐私保护 | 用户协议

您是第19920892位访问者    渝ICP备15012534号-3

版权所有:《表面技术》编辑部 2014 surface-techj.com, All Rights Reserved

邮编:400039 电话:023-68792193传真:023-68792396 Email: bmjs@surface-techj.com

渝公网安备 50010702501715号