李睿,孙治谦,李安俊,王森,王振波.半球形突起弯管冲蚀特性数值研究[J].表面技术,2021,50(9):215-224.
LI Rui,SUN Zhi-qian,LI An-jun,WANG Sen,WANG Zhen-bo.Numerical Analysis of the Erosion Characteristics of Hemispherical Protrusion Elbow[J].Surface Technology,2021,50(9):215-224
半球形突起弯管冲蚀特性数值研究
Numerical Analysis of the Erosion Characteristics of Hemispherical Protrusion Elbow
投稿时间:2020-10-20  修订日期:2020-12-31
DOI:10.16490/j.cnki.issn.1001-3660.2021.09.022
中文关键词:  气固两相流  弯管  冲蚀  新结构  数值模拟
英文关键词:gas-solid two-phase  flow  elbow  erosion  new structure  numerical simulation
基金项目:国家自然科学基金(51774314)
作者单位
李睿 中国石油大学华东 新能源学院,山东 青岛 266580 
孙治谦 中国石油大学华东 新能源学院,山东 青岛 266580 
李安俊 中国石油大学华东 新能源学院,山东 青岛 266580 
王森 中国石油大学华东 新能源学院,山东 青岛 266580 
王振波 中国石油大学华东 新能源学院,山东 青岛 266580 
AuthorInstitution
LI Rui New Energy College, China University of Petroleum East China, Qingdao 266580, China 
SUN Zhi-qian New Energy College, China University of Petroleum East China, Qingdao 266580, China 
LI An-jun New Energy College, China University of Petroleum East China, Qingdao 266580, China 
WANG Sen New Energy College, China University of Petroleum East China, Qingdao 266580, China 
WANG Zhen-bo New Energy College, China University of Petroleum East China, Qingdao 266580, China 
摘要点击次数:
全文下载次数:
中文摘要:
      目的 设计一种带有半球形突起的表面结构,以减轻弯管在气固两相流中受到的冲蚀,并对其冲蚀分布和内部的流场结构进行分析。方法 采用CFD-DPM方法,将气相作为连续相,颗粒作为离散相,结合双向耦合、RNG k-ε湍流模型、Finnie冲蚀预测模型、Grant颗粒反弹模型和粗糙度模型进行计算,将试验数据与计算结果进行对比,以此验证计算的精确性。结果 标准弯管中,冲蚀主要发生的部位为外壁θ=50°至θ=65°,最大冲蚀速率为4.40×10–4 kg/(m2∙s)。对于表面突起的弯管,当突起位置θ=30°时,最大冲蚀速率达到最低,为2.82×10–4 kg/(m2∙s);当突起位置θ=75°时,最大冲蚀速率达到最大值,为6.61×10–4 kg/(m2∙s);突起上的最大冲蚀速率在θ=60°时达到最大,为4.99×10–4 kg/(m2∙s),其他位置突起的最大冲蚀速率均低于3.5×10–4 kg/(m2∙s),但平均冲蚀速率较高。结论 在弯管表面的特定位置设置半球形突起,可以改变颗粒轨迹,降低二次流影响,并在其下游形成缓冲涡,从而对壁面起到保护作用。尤其是当突起位置θ=30°、半径r=D/7时最为明显,最大冲蚀速率相较标准弯管降低了37.05%。但随着突起位置的靠后,其保护作用也逐渐衰弱。
英文摘要:
      A surface structure with hemispherical protrusions is designed to reduce the erosion of the elbow in the gas-solid two-phase flow, and its erosion distribution and internal flow field structure are analyzed. According to the CFD-DPM method, the gas phase is used as the continuous phase and the particles are as the discrete phase. The calculation is carried out by combining the two-way coupling, RNG k-ε turbulence model, Finnie erosion prediction model, Grant particle rebound model and roughness model. The calculation results are compared to verify the accuracy of the calculation. In standard elbows, the main location where erosion occurs is the outer wall θ=50° to θ=65°, and the maximum erosion rate is 4.56×10–4 kg/(m2∙s). For curved pipes with protrusions on the surface, when the protrusion position θ=30°, the maximum erosion rate reaches the lowest, which is 2.82×10–4 kg/(m2∙s); when the protrusion position θ=75°, the maximum erosion rate of the maximum rate is 6.61×10–4 kg/(m2∙s); the maximum erosion rate on the protrusion is 4.99×10–4 kg/(m2∙s) at θ=60°. The maximum erosion rates of protrusions in other locations are lower than 3.5×10–4 kg/(m2∙s), but the average erosion rate is higher. Setting a hemispherical protrusion at a specific position on the surface of the elbow can change the particle trajectory, reduce the influence of the secondary flow, and form a buffer vortex downstream of it, thereby protecting the wall. Especially when the protrusion position is θ=30° and the radius r=D/7, the maximum erosion rate will be reduced by 37.05% compared with the standard elbow. But as the position of the protrusion moves back, its protective effect gradually will be weaken.
查看全文  查看/发表评论  下载PDF阅读器
关闭

关于我们 | 联系我们 | 投诉建议 | 隐私保护 | 用户协议

您是第20079112位访问者    渝ICP备15012534号-3

版权所有:《表面技术》编辑部 2014 surface-techj.com, All Rights Reserved

邮编:400039 电话:023-68792193传真:023-68792396 Email: bmjs@surface-techj.com

渝公网安备 50010702501715号