张志刚,李佳雪,张子阳,梁美林.湿式离合器对偶钢片磨损机理研究[J].表面技术,2021,50(8):295-300, 310.
ZHANG Zhi-gang,LI Jia-xue,ZHANG Zi-yang,LIANG Mei-lin.Research on Wear Mechanism of Steel Disc of Wet Clutch[J].Surface Technology,2021,50(8):295-300, 310
湿式离合器对偶钢片磨损机理研究
Research on Wear Mechanism of Steel Disc of Wet Clutch
投稿时间:2020-10-12  修订日期:2021-02-23
DOI:10.16490/j.cnki.issn.1001-3660.2021.08.027
中文关键词:  湿式DCT  对偶钢片  滑摩表面  摩擦热  塑性变形  磨损机理
英文关键词:wet DCT  steel disc  sliding friction surface  frictional heat  plastic deformation  wear mechanism
基金项目:国家自然科学基金资助项目(52172355);重庆市基础科学与前沿技术研究项目(csts2017jcyjAX0143);中国博士后科学基金资助项目(2020M681808);浙江省博士后科研资助项目(ZJ2020080);重庆理工大学研究生创新项目资助(clgycx20202032)
作者单位
张志刚 重庆理工大学 汽车零部件先进制造技术教育部重点实验室,重庆 400054;宁波圣龙集团有限公司,浙江 宁波 315100 
李佳雪 重庆理工大学 汽车零部件先进制造技术教育部重点实验室,重庆 400054 
张子阳 重庆理工大学 汽车零部件先进制造技术教育部重点实验室,重庆 400054 
梁美林 重庆铁马工业集团有限公司,重庆 400054 
AuthorInstitution
ZHANG Zhi-gang Key Laboratory of Advanced Manufacturing Technology for Automobile Parts, Ministry of Education, Chongqing University of Technology, Chongqing 400054, China;Ningbo Shenglong Group Co., Ltd, Ningbo 315100, China 
LI Jia-xue Key Laboratory of Advanced Manufacturing Technology for Automobile Parts, Ministry of Education, Chongqing University of Technology, Chongqing 400054, China 
ZHANG Zi-yang Key Laboratory of Advanced Manufacturing Technology for Automobile Parts, Ministry of Education, Chongqing University of Technology, Chongqing 400054, China 
LIANG Mei-lin Chongqing Tiema Industry Group Co., Ltd, Chongqing 400054, China 
摘要点击次数:
全文下载次数:
中文摘要:
      目的 研究某车型湿式DCT对偶钢片在给定工况下的磨损机理。方法 在长度为2 km、坡度为30%的坡道上,对某车用湿式离合器进行道路试验,取磨损最严重的对偶钢片,采用扫描电子显微镜(SEM)和X射线能谱仪(EDS)对滑摩表面不同区域及其剖面进行形貌观察,并检测剖面成分演变,表征其磨损表面和剖面的微观形貌特征及由于摩擦热和塑性变形而产生的氧化物剥落现象。结果 对偶钢片沿周向均匀磨损,沿径向不同区域出现深浅不一的划痕和犁沟,摩擦副微凸体接触区域在高温下产生撕裂现象,中径区域承受应力较小部分生成约1 μm厚的薄氧化层,应力较大区域氧化层厚度约为8.5 μm,且氧化层在高温高压下产生裂纹,并扩展,氧化物剥落,形成不同程度的凹坑。整个磨损过程中,对偶钢片的主要磨损机制为粘着磨损、磨粒磨损、氧化磨损及疲劳磨损。结论 对偶钢片表面温度和应力越大,磨损程度越高;距离磨损表面越近,氧化程度越明显。滑摩初期,氧化层较薄,磨损表面轻微氧化,主要磨损机制为粘着磨损伴随轻微磨粒磨损;滑摩后期,生成的大量摩擦热引起氧化物增多,以氧化磨损和疲劳损伤为主。
英文摘要:
      In order to study the wear mechanism of the wet DCT steel disc of a certain vehicle under a given working condition, a road test was carried out on a slope of 2 km in length and 30% in slope. The most severely wear steel disc was selected. The appearances of different areas and sections of the sliding friction surface were observed with a scanning electron microscope (SEM). The evolution of the section composition was detected by using energy dispersive X-ray spectrometer (EDS). Both can characterize the micro-morphological characteristics of the wear surface and the section and the oxide spalling phenomenon due to frictional heat and plastic deformation. The steel disc wears uniformly in the circumferential direction, and there are scratches and furrows of different depths in different areas along the radial direction. The contact area of the friction pair micro-protrusion body tears at high temperature. The middle diameter area which is less stressed generates a thin oxide layer of 1 μm, and the thickness of the oxide layer in the area with greater stress is about 8.5 μm. The oxide layer cracks and expands under high temperature and high pressure, and the oxide peels off to form pits of varying degrees. During the entire wear process, the main wear mechanisms of the steel disc are adhesive wear, abrasive wear, oxidative wear and fatigue wear. The greater the temperature and stress on the surface of the steel disc, the higher the degree of wear; the closer to the wear surface, the more obvious the degree of oxidation. At the beginning of sliding friction, the oxide layer is thinner, and the wear surface is slightly oxidized. The main wear mechanism is adhesive wear with slight abrasive wear; in the later stage of sliding friction, a large amount of friction heat generated increases oxides, and the main wear mechanism are oxidative wear and fatigue damage.
查看全文  查看/发表评论  下载PDF阅读器
关闭

关于我们 | 联系我们 | 投诉建议 | 隐私保护 | 用户协议

您是第19958127位访问者    渝ICP备15012534号-3

版权所有:《表面技术》编辑部 2014 surface-techj.com, All Rights Reserved

邮编:400039 电话:023-68792193传真:023-68792396 Email: bmjs@surface-techj.com

渝公网安备 50010702501715号