刘艳晨,郝贠洪,高峰,张飞龙.模拟风沙环境下混凝土防护涂层抗冲蚀性能的研究[J].表面技术,2021,50(8):273-281, 294.
LIU Yan-chen,HAO Yun-hong,GAO Feng,ZHANG Fei-long.Study on Erosion Resistance of Concrete Protective Coating under Simulated Desert Environment[J].Surface Technology,2021,50(8):273-281, 294
模拟风沙环境下混凝土防护涂层抗冲蚀性能的研究
Study on Erosion Resistance of Concrete Protective Coating under Simulated Desert Environment
投稿时间:2020-10-16  修订日期:2021-03-01
DOI:10.16490/j.cnki.issn.1001-3660.2021.08.025
中文关键词:  风沙环境  抗冲蚀性能  聚氨酯涂层  丙烯酸涂层  环氧树脂涂层  分形维数  冲蚀机理
英文关键词:wind sand enivironment  erosion resistance  polyurethane coating  acrylic coating  epoxy resin coating  fractal dimension  erosion mechanism
基金项目:国家自然科学基金(51468049,11662012,11862022);内蒙古自治区博士研究生创新项目(B20191127Z);内蒙古自治区自然科学基金面上项目(2018MS05047);内蒙古自治区青年科技英才支持计划项目(NJYT-17-A09);内蒙古自治区草原英才资助项目
作者单位
刘艳晨 内蒙古工业大学 理学院 ,呼和浩特 010051;内蒙古工业大学 内蒙古自治区土木工程结构与力学重点实验室,呼和浩特 010051 ;内蒙古工业大学内蒙古自治区建筑检测鉴定与安全评估工程技术研究中心,呼和浩特 010051 
郝贠洪 内蒙古工业大学 理学院 ,呼和浩特 010051;内蒙古工业大学 内蒙古自治区土木工程结构与力学重点实验室,呼和浩特 010051 ;内蒙古工业大学内蒙古自治区建筑检测鉴定与安全评估工程技术研究中心,呼和浩特 010051 
高峰 内蒙古工业大学 内蒙古自治区土木工程结构与力学重点实验室,呼和浩特 010051 ;内蒙古工业大学内蒙古自治区建筑检测鉴定与安全评估工程技术研究中心,呼和浩特 010051 ;内蒙古工业大学土木工程学院,呼和浩特 010051 
张飞龙 内蒙古工业大学 内蒙古自治区土木工程结构与力学重点实验室,呼和浩特 010051 ;内蒙古工业大学内蒙古自治区建筑检测鉴定与安全评估工程技术研究中心,呼和浩特 010051 ;内蒙古工业大学土木工程学院,呼和浩特 010051 
AuthorInstitution
LIU Yan-chen School of Science,Hohhot 010051, China ;Inner Mongolia Key Laboratory of Civil Engineering Structure and Mechanics,Hohhot 010051, China ;Inner Mongolia Autonomous Region Construction Inspection and Appraisal and Safety Assessment Engineering Technology Research Center,Hohhot 010051, China 
HAO Yun-hong School of Science,Hohhot 010051, China ;Inner Mongolia Key Laboratory of Civil Engineering Structure and Mechanics,Hohhot 010051, China ;Inner Mongolia Autonomous Region Construction Inspection and Appraisal and Safety Assessment Engineering Technology Research Center,Hohhot 010051, China 
GAO Feng Inner Mongolia Key Laboratory of Civil Engineering Structure and Mechanics,Hohhot 010051, China ;Inner Mongolia Autonomous Region Construction Inspection and Appraisal and Safety Assessment Engineering Technology Research Center,Hohhot 010051, China ;School of Civil Engineering, Inner Mongolia University of Technology, Hohhot 010051, China 
ZHANG Fei-long Inner Mongolia Key Laboratory of Civil Engineering Structure and Mechanics,Hohhot 010051, China ;Inner Mongolia Autonomous Region Construction Inspection and Appraisal and Safety Assessment Engineering Technology Research Center,Hohhot 010051, China ;School of Civil Engineering, Inner Mongolia University of Technology, Hohhot 010051, China 
摘要点击次数:
全文下载次数:
中文摘要:
      目的 研究不同类型的防护涂层对风沙环境下混凝土抗冲蚀性能的影响规律及作用机理,从而选取适合风沙环境且综合性能良好的混凝土防护涂层。方法 以聚氨酯、丙烯酸及环氧树脂为研究对象,对三种混凝土结构防护涂层进行了研究。通过接触角和显微硬度对涂层的物理及力学性能进行了分析,并利用模拟风沙环境侵蚀实验系统,在不同冲蚀参数下,对混凝土结构防护涂层体系的抗冲蚀性能的变化规律进行测试。结合混凝土防护涂层风沙冲蚀实验及扫描电镜表征,探究风沙环境下混凝土防护涂层的冲蚀机理。结果 相同冲蚀条件下,不同防护涂层的冲蚀率大小为:聚氨酯防护涂层>环氧树脂防护涂层>丙烯酸防护涂层。喷涂丙烯酸防护涂层试样的抗冲蚀性能比喷涂聚氨酯防护涂层的试样提升了约57.56%,比喷涂环氧树脂防护涂层的试样提升了约33.57%。冲蚀表面分形维数(Ds)的变化在一定程度上反映了不同冲蚀阶段的变化,结合Ds及被冲蚀后涂层表面的微观形貌特征,发现在低角度冲蚀时,受粒子拉应力影响,涂层表面发生了撕裂及脱粘现象,冲蚀率较高。在高角度冲蚀时,受粒子压应力影响,涂层表面出现隆起及空穴等塑性变形,冲蚀表面Ds增加,且在材料屈服应力范围内未造成损伤界面的脱落,故冲蚀率较低,显示出典型塑性材料冲蚀损伤的特征。结论 聚氨酯、丙烯酸及环氧树脂防护涂层体系,均能提高混凝土的抗冲蚀性能。结合防护涂层的接触角及硬度测试结果,发现丙烯酸防护涂层作为风沙环境中混凝土结构防护涂层时,效果较好,适用于该环境下的混凝土防护。不同防护涂层在受到冲蚀时,不存在明显的塑性变形和脆性破坏阶段,而是随冲蚀分量变化,涂层由塑性变形向脆性破坏过渡,且该现象存在于整个冲蚀过程中。
英文摘要:
      The research is to study the influence law and the action mechanism of different types of protective coatings on the erosion resistance of the concrete in the wind sand environment, and then select the concrete protective coatings with the comprehensive performance in the wind sand environment. As the research objects, three kinds of protective coatings for the concrete structure including polyurethane, acrylic acid and epoxy resin were studied. The mechanical properties of the coatings were analyzed by the contact angle and hardness. The change rule of the erosion resistance of the system of protective coatings for the concrete structure with erosion parameters was tested by the simulated sand erosion experimental system. Combined with the sand erosion test of concrete protective coatings and the observation results of the scanning electron microscope, the erosion mechanism of concrete protective coatings in the wind sand environment was explored. Under the same erosion conditions, the erosion rate of different protective coatings was as follows:he polyurethane protective coating > the epoxy resin protective coating > the acrylic acid protective coating; the corrosion resistance of the protective coating sprayed acrylic was about 57.56% higher than that of the protective coating sprayed polyurethane, and 33% higher than that of the protective coating sprayed epoxy resin. The change of the fractal dimension Ds of the erosion surface reflects the change of different erosion stages. Combined with the fractal dimension Ds and the microscopic morphology after the erosion, it is shown that when eroded at low angle, tearing and debonding occur on the coating surface under the influence of particle tensile stress, and the erosion rate is higher. When eroded at high angle, plastic deformations such as a structure uplift and cavities are formed on the coating surface under the influence of particle compressive stress, which buffers the impact of sand particles on the coating, and the fractal dimension Ds of the erosion surface increases, and the damage interface does not fall within the yield stress range of the material, and the erosion rate is low, which shows the characteristics of the erosion damage of typical plastic materials. The system of protective coatings of polyurethane, acrylic acid and epoxy resin can improve the erosion resistance of the concrete. Combined with the comprehensive evaluation of the results of the contact angle and the hardness test of protective coatings, the protective coating of acrylic acid is more suitable for the concrete protection in the wind sand environment. When different protective coatings are eroded, there is no obvious plastic deformation and the brittle failure stage, but the transition mechanism from the plastic deformation to the brittle failure with the change of the erosion component, and this phenomenon exists in the whole erosion process.
查看全文  查看/发表评论  下载PDF阅读器
关闭

关于我们 | 联系我们 | 投诉建议 | 隐私保护 | 用户协议

您是第19952271位访问者    渝ICP备15012534号-3

版权所有:《表面技术》编辑部 2014 surface-techj.com, All Rights Reserved

邮编:400039 电话:023-68792193传真:023-68792396 Email: bmjs@surface-techj.com

渝公网安备 50010702501715号