龚聪煜,刘善邦,曹中清,聂裕宸,蔡振兵.电泳沉积法制备氧化石墨烯膜的微动电接触性能[J].表面技术,2021,50(8):227-236.
GONG Cong-yu,LIU Shan-bang,CAO Zhong-qing,NIE Yu-chen,CAI Zhen-bing.The Fretting Electrical Contact Performance of Graphene Oxide Films Prepared by Electrophoretic Deposition[J].Surface Technology,2021,50(8):227-236
电泳沉积法制备氧化石墨烯膜的微动电接触性能
The Fretting Electrical Contact Performance of Graphene Oxide Films Prepared by Electrophoretic Deposition
投稿时间:2020-10-12  修订日期:2021-01-17
DOI:10.16490/j.cnki.issn.1001-3660.2021.08.021
中文关键词:  氧化石墨烯膜  电泳沉积法  微动磨损  电接触  表面粗糙度  高温
英文关键词:graphene oxide film  electrophoretic deposition  fretting wear  electrical contact  surface roughness  high temperature
基金项目:国家自然科学基金项目(U1730131)
作者单位
龚聪煜 西南交通大学 机械工程学院,成都 610031 
刘善邦 西南交通大学 机械工程学院,成都 610031 
曹中清 西南交通大学 机械工程学院,成都 610031 
聂裕宸 西南交通大学 机械工程学院,成都 610031 
蔡振兵 西南交通大学 机械工程学院,成都 610031 
AuthorInstitution
GONG Cong-yu School of Mechanical Engineering, Southwest Jiaotong University, Chengdu 610031, China 
LIU Shan-bang School of Mechanical Engineering, Southwest Jiaotong University, Chengdu 610031, China 
CAO Zhong-qing School of Mechanical Engineering, Southwest Jiaotong University, Chengdu 610031, China 
NIE Yu-chen School of Mechanical Engineering, Southwest Jiaotong University, Chengdu 610031, China 
CAI Zhen-bing School of Mechanical Engineering, Southwest Jiaotong University, Chengdu 610031, China 
摘要点击次数:
全文下载次数:
中文摘要:
      目的 研究氧化石墨烯膜在不同表面粗糙度条件下的微动电接触性能。方法 采用金属铜为基底,使用不同粒度的砂纸进行处理,制备不同表面粗糙度的试样。通过电泳沉积法在不同粗糙度的铜表面制备氧化石墨烯膜。通过微动电接触试验装置,研究氧化石墨烯膜在不同表面粗糙度条件下的微动电接触性能。采用拉曼光谱仪分析氧化石墨烯膜的沉积情况。使用白光干涉仪、扫描电镜及能谱仪对磨痕形貌、磨损体积和成分进行分析。结合摩擦因数及接触电阻,分析氧化石墨烯膜在微动磨损下的电接触性能。结果 表面粗糙度为1.51、1.27 μm时,氧化石墨烯膜的D峰和G峰强度高于其他试样。在室温条件下,接触电阻最低可降至10 mΩ,且更加稳定。与未处理试样相比,摩擦因数减少的最大幅度为50%,从0.46减少至0.23(Ra=0.88 μm);磨损体积减少的最大幅度为90%,从6.28×105 μm3减少至6.40×104 μm3(Ra=1.27 μm)。在100 ℃时,接触电阻基本不超过200 mΩ,摩擦因数增加至0.51及以上,磨损体积增加至1.45×105 μm3及以上。表面粗糙度为1.51、1.27 μm的试样磨损体积明显低于其他两个表面粗糙度的试样。在200 ℃时,接触电阻最终超过了400 mΩ,摩擦因数不低于0.49,磨损体积增加至4.05×105 μm3及以上。结论 氧化石墨烯膜在表面粗糙度为1.51、1.27 μm时的沉积效果较好。氧化石墨烯膜能显著降低接触电阻、摩擦因数和磨损体积。高温下,接触电阻和摩擦因数上升,磨损加剧。
英文摘要:
      The work aims to study the fretting electrical contact performance of graphene oxide films with different surface roughness. Copper was used as the substrate. Samples with different surface roughness were prepared using sandpaper of different particle sizes. Graphene oxide films were prepared on copper surfaces with different surface roughness by electrophoretic deposition. The fretting contact performance of graphene oxide films under different surface roughness conditions were studied by fretting electrical contact test device. The deposition of graphene oxide films was analyzed by Raman spectroscopy. White light interferometer, scanning electron microscope and energy dispersive spectrometer were used to observe the wear scar morphology, wear volume and composition. The electrical contact performance and wear mechanism of graphene oxide films under fretting were analyzed by combining the friction coefficient and electrical resistance. When the surface roughness was 1.51 μm and 1.27 μm, the D-peak and G-peak strengths of graphene oxide films were higher than those of other samples. At RT, the lowest contact resistance can be reduced to 10 mΩ and more stable. Compared with the untreated samples, the maximum reduction of coefficient of friction was 50%, from 0.46 to 0.23 (Ra=0.88 μm). The maximum reduction of wear volume was 90%, from 6.28×105 μm3 to 6.4×104 μm3 (Ra=1.27 μm)。At 100 ℃, the contact resistance was not more than 200 mΩ, the coefficient of friction increased to 0.51 and above, and the wear volume increased to 1.45×105 μm3 and above. Moreover, wear volumes with surface roughness of 1.51 μm and 1.27 μm were significantly lower than those with other two surface roughness. At 200 ℃, contact resistance finally exceeded 400 mΩ, with the coefficient of friction no less than 0.49 and wear volume increasing to 4.05×105 μm3 or above. The results show that the deposition effect of graphene oxide films is the best when the surface roughness is 1.51 μm and 1.27 μm. Graphene oxide films can significantly reduce contact resistance, coefficient of friction and wear volume. At high temperature, contact resistance and coefficient of friction increases and wear intensifies.
查看全文  查看/发表评论  下载PDF阅读器
关闭

关于我们 | 联系我们 | 投诉建议 | 隐私保护 | 用户协议

您是第20122782位访问者    渝ICP备15012534号-3

版权所有:《表面技术》编辑部 2014 surface-techj.com, All Rights Reserved

邮编:400039 电话:023-68792193传真:023-68792396 Email: bmjs@surface-techj.com

渝公网安备 50010702501715号