计俞伟,薛名山,李娜,李坚,殷祚炷,罗一丹.纳米氧化锌掺杂对多孔聚氨酯薄膜表面结构和性能的影响[J].表面技术,2021,50(7):149-157.
JI Yu-wei,XUE Ming-shan,LI Na,LI Jian,YIN Zuo-zhu,LUO Yi-dan.Effect of Nano-ZnO Doping on Surface Microstructures and Properties of Cellular Porous Polyurethane Films[J].Surface Technology,2021,50(7):149-157
纳米氧化锌掺杂对多孔聚氨酯薄膜表面结构和性能的影响
Effect of Nano-ZnO Doping on Surface Microstructures and Properties of Cellular Porous Polyurethane Films
投稿时间:2020-09-15  修订日期:2021-01-11
DOI:10.16490/j.cnki.issn.1001-3660.2021.07.014
中文关键词:  聚氨酯  纳米氧化锌  多孔薄膜  润湿性  热稳定性  超疏水
英文关键词:polyurethane  nano zinc oxide  porous film  wettability  thermal stability  super hydrophobic
基金项目:国家自然科学基金(11864024,51662032)
作者单位
计俞伟 南昌航空大学 材料科学与工程学院,南昌 330063 
薛名山 南昌航空大学 材料科学与工程学院,南昌 330063 
李娜 南昌航空大学 航空制造与工程学院,南昌 330063 
李坚 南昌航空大学 材料科学与工程学院,南昌 330063 
殷祚炷 南昌航空大学 航空制造与工程学院,南昌 330063 
罗一丹 南昌航空大学 材料科学与工程学院,南昌 330063 
AuthorInstitution
JI Yu-wei School of Materials Science and Engineering,Nanchang 330063, China 
XUE Ming-shan School of Materials Science and Engineering,Nanchang 330063, China 
LI Na School of Aeronautical Manufacturing and Engineering, Nanchang Hangkong University, Nanchang 330063, China 
LI Jian School of Materials Science and Engineering,Nanchang 330063, China 
YIN Zuo-zhu School of Aeronautical Manufacturing and Engineering, Nanchang Hangkong University, Nanchang 330063, China 
LUO Yi-dan School of Materials Science and Engineering,Nanchang 330063, China 
摘要点击次数:
全文下载次数:
中文摘要:
      目的 通过纳米氧化锌(nano-ZnO)掺杂制备规整有序、分布均匀的蜂窝状多孔聚氨酯薄膜,并改善多孔薄膜表面的润湿性和热稳定性。方法 利用nano-ZnO的极性分子特性,以溶液共混的方式将TPU用四氢呋喃(THF)溶解,添加nano-ZnO颗粒进行混合,采用微液滴模板法固化成膜,制备不同掺杂比例的nano-ZnO/TPU多孔复合薄膜。结果 nano-ZnO的质量分数为0%~50%时,薄膜表面微孔结构呈现先有序、后无序。nano-ZnO的质量分数为10%(TPU-10)时,表面微孔排列最为致密有序,表面静态接触角(CA)达到最大,为134.5°,相比于未掺杂的多孔TPU薄膜,软段熔融温度(tm)、硬段软化温度(tg)分别升高了51、8.1 ℃,起始热分解温度(td)降低了61.1 ℃。nano-ZnO质量分数为40%~50%(TPU-40、TPU-50)时,经高锰酸钾(KMnO4)粗化及低表面能物质全氟辛基三甲氧基硅氧烷(POTS)修饰,CA达到156°以上。结论 掺杂的nano-ZnO抑制了多孔薄膜制备过程中TPU体系的微相分离,使多孔复合薄膜tm、tg相对于TPU-0有所升高,同时由于部分软段内部的氢键被取代,导致td降低。nano-ZnO质量分数为10%时,多孔复合薄膜表面微孔排列最规则,CA达到最大值;nano-ZnO质量分数≥40%时,薄膜通过KMnO4粗化及低表面能修饰,可获得超疏水性。
英文摘要:
      This paper aims to obtain a porous polyurethane (TPU) film with regular and orderly distribution of micropores, improve the micro-nano structure of the porous film surface, and improve the wettability of the film surface.The polar molecular characteristics of nano-ZnO are taken advantaged of, TPU is dissolved with tetrahydrofuran (THF) in a solution blending manner, nano-ZnO particles are added for mixing, and micro-droplet template method is used to solidify it into a film to prepare different doping ratios of Nano-ZnO/TPU porous composite film. When the content of nano-ZnO is between 0 wt% to 50 wt%, the microporous structure of the film surface is first ordered and then disordered; when the content of nano-ZnO is 10 wt% (TPU-10), the surface micropores are arranged most densely and orderly, and the static contact angle (CA) of the surface reaches the maximum of 134.5°. Compared with the undoped porous TPU film, the soft segment melting temperature (tm) and hard segment softening temperature (tg) are increased by 51 ℃ and 8.1 ℃, respectively. The decomposition temperature (td) is reduced by 61.1 ℃. When nano-ZnO content is 40 wt% to 50 wt% (TPU-40, TPU-50), after being coarsened by potassium permanganate (KMnO4) and modified by POTS, the CA reaches above 156°. Doped nano-ZnO inhibited the microphase separation of TPU system during the preparation of porous thin films, and made tm and tg of soft segments of porous composite thin films higher than those of TPU-0, while td decreased due to the substitution of hydrogen bonds in some soft segments. When nano-ZnO content is 10 wt%, the micropores on the surface of porous composite film are arranged regularly, and CA reaches the maximum. When nano-ZnO ≥ 40 wt%, the film can be super hydrophobic by KMnO4 roughening and low surface energy modification.
查看全文  查看/发表评论  下载PDF阅读器
关闭

关于我们 | 联系我们 | 投诉建议 | 隐私保护 | 用户协议

您是第20112078位访问者    渝ICP备15012534号-3

版权所有:《表面技术》编辑部 2014 surface-techj.com, All Rights Reserved

邮编:400039 电话:023-68792193传真:023-68792396 Email: bmjs@surface-techj.com

渝公网安备 50010702501715号