董凯辉,宋影伟,韩恩厚.钛合金耐磨微弧氧化制备技术的研究进展[J].表面技术,2021,50(7):57-65.
DONG Kai-hui,SONG Ying-wei,HAN En-hou.Research Progress on the Preparation of Wear-resistant Micro-arc Oxidation Coatings on Titanium Alloys[J].Surface Technology,2021,50(7):57-65
钛合金耐磨微弧氧化制备技术的研究进展
Research Progress on the Preparation of Wear-resistant Micro-arc Oxidation Coatings on Titanium Alloys
投稿时间:2021-04-30  修订日期:2021-05-15
DOI:10.16490/j.cnki.issn.1001-3660.2021.07.004
中文关键词:  钛合金  微弧氧化  耐磨性  复合处理  纳米颗粒
英文关键词:titanium alloys  micro-arc oxidation  wear resistance  composite treatment  nanoparticles
基金项目:南方海洋科学与工程广东省实验室(珠海)创新团队建设项目(311021013)
作者单位
董凯辉 中国科学院金属研究所 中国科学院核用材料与安全评价重点实验室,沈阳 110016;中国科学技术大学 材料科学与工程学院,合肥 230026;南方海洋科学与工程广东省实验室珠海,广东 珠海 519000 
宋影伟 中国科学院金属研究所 中国科学院核用材料与安全评价重点实验室,沈阳 110016;南方海洋科学与工程广东省实验室珠海,广东 珠海 519000 
韩恩厚 中国科学院金属研究所 中国科学院核用材料与安全评价重点实验室,沈阳 110016;南方海洋科学与工程广东省实验室珠海,广东 珠海 519000 
AuthorInstitution
DONG Kai-hui CAS Key Laboratory of Nuclear Materials and Safety Assessment, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China;School of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China;Southern Marine Science and Engineering Guangdong Laboratory Zhuhai, Zhuhai 519000, China 
SONG Ying-wei CAS Key Laboratory of Nuclear Materials and Safety Assessment, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China;Southern Marine Science and Engineering Guangdong Laboratory Zhuhai, Zhuhai 519000, China 
HAN En-hou CAS Key Laboratory of Nuclear Materials and Safety Assessment, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China;Southern Marine Science and Engineering Guangdong Laboratory Zhuhai, Zhuhai 519000, China 
摘要点击次数:
全文下载次数:
中文摘要:
      钛合金质量轻,比强度高,尤其耐蚀性优异,在海洋、航空航天、医疗器械等领域应用越来越广泛。但钛合金硬度较低,摩擦因数高,粘着磨损、磨粒磨损和微动磨损倾向大,极大限制了其作为摩擦部件的应用。微弧氧化处理可以获得硬度高的陶瓷质膜,附着力强,既可以单独使用来提升钛合金的耐磨性,又能与多种后处理方式兼容,是提高钛合金耐磨性的有效方法。影响微弧氧化膜耐磨性的因素很多,详细论述了成膜电解液、电参数及不同复合处理方式对钛合金微弧氧化耐磨性的影响。电解液是决定微弧氧化膜耐磨性最关键的因素,通过选择合适的电解液体系或加入添加剂,使TiO2氧化膜中掺杂硬度更高的Al2O3、AlTiO5、SiO2等氧化物,大幅改善微弧氧化膜的耐磨性。通过调整电参数(包括恒流/恒压、单相/双相输出、频率等),将直接影响微弧氧化膜中硬质氧化物的类型、含量、分布、表面粗糙度等,进而影响摩擦磨损性能。复合处理包括微弧氧化膜表面机械抛光、喷涂石墨或聚四氟乙烯、磁控溅射硬质薄膜,以及氧化液中复合纳米颗粒等,其中复合纳米颗粒不仅可以修复膜层中的缺陷,还可以丰富氧化膜的相组成,使其具有耐磨、自润滑、耐腐蚀等多种功能特性,但纳米颗粒的分散、补加以及不同颗粒之间的协同影响还需要深入研究。
英文摘要:
      Titanium alloys with light weight, high strength-to-weight ratio, and excellent corrosion resistance, are widely applied in the fields of marine, aerospace and medical instruments. However, titanium alloys are susceptible to adhesive wear, abrasive wear, and fretting wear due to their low harness and high friction coefficient, which greatly restricts their widespread use as friction parts. Micro-arc oxidation (MAO) treatment can give hard ceramic film with strong adhesion. MAO coatings can not only be used alone to improve the wear resistance of titanium alloys, but also be compatible with other post treatment methods. The effect of electrolytes, electrical parameters and different composite methods on the wear resistance of the MAO coatings is introduced in detail. Electrolytes play the most important role in the wear resistance of MAO coatings. If suitable electrolytes and additives are used for MAO treatment, the hard oxides of Al2O3, AlTiO5, SiO2 etc. can be mixed into the TiO2 film to greatly enhance the wear resistance. Adjustment of electrical parameters (including constant current/voltage, single/double output, frequency and so on) affects the types, contents, distribution, and roughness of the hard oxides in MAO coatings, which tremendously affect the friction and wear properties. Composite treatments include mechanical polishing, spraying graphite or PTFE, magnetron sputtering hard film, and addition of nanoparticles into the bath electrolytes. The addition of nanoparticles can repair the defects in the MAO coatings. Moreover, new oxide phases can be mixed into the MAO coatings to achieve the multifunctional properties of wear resistance, self-lubrication, and corrosion resistance. However, the dispersion, replenishment, and synergy effect of nanoparticles should be investigated further.
查看全文  查看/发表评论  下载PDF阅读器
关闭

关于我们 | 联系我们 | 投诉建议 | 隐私保护 | 用户协议

您是第19954537位访问者    渝ICP备15012534号-3

版权所有:《表面技术》编辑部 2014 surface-techj.com, All Rights Reserved

邮编:400039 电话:023-68792193传真:023-68792396 Email: bmjs@surface-techj.com

渝公网安备 50010702501715号