李俊,杨立军,郑航,蒋泽睿,隋泽卉.激光选区熔化次数对316L不锈钢表面性能的影响[J].表面技术,2021,50(6):93-100.
LI Jun,YANG Li-jun,ZHENG Hang,JIANG Ze-rui,SUI Ze-hui.Influence of Laser Selection Melting Times on the Surface Properties of 316L Stainless Steel[J].Surface Technology,2021,50(6):93-100
激光选区熔化次数对316L不锈钢表面性能的影响
Influence of Laser Selection Melting Times on the Surface Properties of 316L Stainless Steel
投稿时间:2020-06-20  修订日期:2020-11-03
DOI:10.16490/j.cnki.issn.1001-3660.2021.06.009
中文关键词:  激光选区熔化  316L不锈钢  激光重熔  表面粗糙度  表面硬度
英文关键词:Laser selective melting  316L stainless steel  laser remelting  surface roughness  surface hardness
基金项目:西安市未央区科技计划项目(202030);陕西省教育厅专项科研计划项目(2020KJRC0008)
作者单位
李俊 陕西科技大学,西安 710021 
杨立军 陕西科技大学,西安 710021 
郑航 陕西科技大学,西安 710021 
蒋泽睿 陕西科技大学,西安 710021 
隋泽卉 陕西科技大学,西安 710021 
AuthorInstitution
LI Jun Shaanxi University of Science & Technology, Xi'an 710021, China 
YANG Li-jun Shaanxi University of Science & Technology, Xi'an 710021, China 
ZHENG Hang Shaanxi University of Science & Technology, Xi'an 710021, China 
JIANG Ze-rui Shaanxi University of Science & Technology, Xi'an 710021, China 
SUI Ze-hui Shaanxi University of Science & Technology, Xi'an 710021, China 
摘要点击次数:
全文下载次数:
中文摘要:
      目的 通过对激光选区熔化次数的控制,研究其对316L不锈钢表面晶相、化学成分和物理性能的影响规律,并最终获得综合性能优良的316L不锈钢表面。方法 在激光功率80 W、激光扫描速度500 mm/s、成形厚度0.03 mm、扫描间距0.06 mm条件下,通过改变激光选区熔化次数成形试件,并通过光学显微镜(OM)、电子扫描显微镜(SEM)、X射线衍射仪(XRD)、背散射电子衍射仪(EBSD)、数字式显微硬度计和DSF900表面形状粗糙度测定机等对试件上表面进行检测。结果 发现随着激光重熔次数增加,宏观凝固组织明显细化,晶粒变大,第二相分布愈加弥散;Cr0.19Fe0.7Ni0.11合金化合物的含量也随之增加,重熔3次以后,Cr0.19Fe0.7Ni0.11合金化合物的含量趋于稳定;低-∑CSL晶界的比例随之增加,但相对于其他重熔后的低层错能合金材料,低-∑CSL晶界的比例还较低;试件表面硬度先急剧增加,随后趋于稳定,重熔5次时,硬度最大,为316.9HV,重熔1次时,硬度最小,为265.9HV;表面粗糙度先减小后增大,重熔2次时粗糙度最小,此时Ra为8.076 μm,重熔5次时,粗糙度最大,Ra为17.228 μm。结论 随着激光选区熔化次数的增加,316L不锈钢表面性能得到了改善。但熔化次数过多,会产生过熔和飞溅现象,使不锈钢表面性能下降。
英文摘要:
      By controlling the number of laser melting times in selected areas, to study its influence on the crystalline phase, chemical composition and physical properties of the 316L stainless steel surface, and to obtain a 316L stainless steel surface with excellent comprehensive properties. Under the conditions of laser power 80 W, laser scanning speed 500 mm/s, molding thickness 0.03 mm, and scanning pitch 0.06 mm, the number of melting times is controlled during laser selective melting (SLM) molding, and it is passed through an optical microscope (OM), Scanning electron microscope (SEM), X-ray diffractometer (XRD), backscattered electron diffractometer (EBSD), digital micro-hardness tester and DSF900 surface profile roughness tester and other instruments for testing. The results show that with the increase of the number of laser remelting:the macro solidification structure is significantly refined, the grains become larger, and the second phase distribution is more dispersed; the content of the Cr0.19Fe0.7Ni0.11 alloy compound also increases, and the remelting 3 times later, the content of Cr0.19Fe0.7Ni0.11 alloy compounds tends to be stable; the proportion of low-∑CSL grain boundaries increases, but the proportion of low-∑CSL grain boundaries is still higher than that of other remelted low stacking energy alloy materials. Low surface hardness increases rapidly and then tends to be stable. The maximum hardness after remelting is 316.9HV and the minimum hardness after remelting is 265.9HV; the surface roughness decreases first and then increases, and the minimum roughness after remelting is 3, Ra is 8.076 μm, and the maximum roughness Ra of 5 times of remelting is 17.228 μm. With the increase of the number of laser melting times, the surface performance of 316L stainless steel has been improved; but when the number of melting times is too much, overmelting and splashing will occur, which will reduce the surface performance of stainless steel.
查看全文  查看/发表评论  下载PDF阅读器
关闭

关于我们 | 联系我们 | 投诉建议 | 隐私保护 | 用户协议

您是第20124915位访问者    渝ICP备15012534号-3

版权所有:《表面技术》编辑部 2014 surface-techj.com, All Rights Reserved

邮编:400039 电话:023-68792193传真:023-68792396 Email: bmjs@surface-techj.com

渝公网安备 50010702501715号