萧金瑞,梁忠伟,黄建枫,高伟林,刘晓初,陈宥丞.强化研磨对轴承套圈表面耐蚀性的影响[J].表面技术,2021,50(5):238-244, 294.
XIAO Jin-rui,LIANG Zhong-wei,HUANG Jian-feng,GAO Wei-lin,LIU Xiao-chu,CHEN You-cheng.Effect of Strengthen Grinding on the Surface Corrosion Resistance of Bearing Ring[J].Surface Technology,2021,50(5):238-244, 294
强化研磨对轴承套圈表面耐蚀性的影响
Effect of Strengthen Grinding on the Surface Corrosion Resistance of Bearing Ring
投稿时间:2020-06-01  修订日期:2020-07-31
DOI:10.16490/j.cnki.issn.1001-3660.2021.05.026
中文关键词:  轴承套圈  强化研磨  喷射压力  耐蚀性  电化学腐蚀
英文关键词:bearing ring  strengthen grinding  jet pressure  corrosion resistance  electrochemistry corrosion
基金项目:国家自然科学基金(52075109,51975136);国家重点研发计划(2018YFB2000501);广东省科技计划(2017B090910010,2017A010102014);广东省高等学校重点领域专项(2019KZDZX1009);广州市科技计划(202102080225)
作者单位
萧金瑞 1.广州大学 机械与电气工程学院 广州 510006;2.广州大学 广州市金属材料强化研磨高性能加工重点实验室广州 510006; 3.广州大学 广东省强化研磨高性能微纳加工工程技术研究中心,广州 510006 
梁忠伟 1.广州大学 机械与电气工程学院 广州 510006;2.广州大学 广州市金属材料强化研磨高性能加工重点实验室广州 510006; 3.广州大学 广东省强化研磨高性能微纳加工工程技术研究中心,广州 510006 
黄建枫 1.广州大学 机械与电气工程学院 广州 510006;2.广州大学 广州市金属材料强化研磨高性能加工重点实验室广州 510006; 3.广州大学 广东省强化研磨高性能微纳加工工程技术研究中心,广州 510006 
高伟林 1.广州大学 机械与电气工程学院 广州 510006;2.广州大学 广州市金属材料强化研磨高性能加工重点实验室广州 510006; 3.广州大学 广东省强化研磨高性能微纳加工工程技术研究中心,广州 510006 
刘晓初 1.广州大学 机械与电气工程学院 广州 510006;2.广州大学 广州市金属材料强化研磨高性能加工重点实验室广州 510006; 3.广州大学 广东省强化研磨高性能微纳加工工程技术研究中心,广州 510006 
陈宥丞 1.广州大学 机械与电气工程学院 广州 510006;2.广州大学 广州市金属材料强化研磨高性能加工重点实验室广州 510006; 3.广州大学 广东省强化研磨高性能微纳加工工程技术研究中心,广州 510006 
AuthorInstitution
XIAO Jin-rui 1. School of Mechanical & Electric Engineering,Guangzhou 510006, China; 2. Guangzhou Key Laboratory for Strengthened Grinding and High Performance Machining of Metal Material,Guangzhou 510006, China; 3. Guangdong Engineering and Technology Research Centre for Strengthen Grinding and High Performance Micro-nanomachining, Guangzhou University, Guangzhou 510006, China 
LIANG Zhong-wei 1. School of Mechanical & Electric Engineering,Guangzhou 510006, China; 2. Guangzhou Key Laboratory for Strengthened Grinding and High Performance Machining of Metal Material,Guangzhou 510006, China; 3. Guangdong Engineering and Technology Research Centre for Strengthen Grinding and High Performance Micro-nanomachining, Guangzhou University, Guangzhou 510006, China 
HUANG Jian-feng 1. School of Mechanical & Electric Engineering,Guangzhou 510006, China; 2. Guangzhou Key Laboratory for Strengthened Grinding and High Performance Machining of Metal Material,Guangzhou 510006, China; 3. Guangdong Engineering and Technology Research Centre for Strengthen Grinding and High Performance Micro-nanomachining, Guangzhou University, Guangzhou 510006, China 
GAO Wei-lin 1. School of Mechanical & Electric Engineering,Guangzhou 510006, China; 2. Guangzhou Key Laboratory for Strengthened Grinding and High Performance Machining of Metal Material,Guangzhou 510006, China; 3. Guangdong Engineering and Technology Research Centre for Strengthen Grinding and High Performance Micro-nanomachining, Guangzhou University, Guangzhou 510006, China 
LIU Xiao-chu 1. School of Mechanical & Electric Engineering,Guangzhou 510006, China; 2. Guangzhou Key Laboratory for Strengthened Grinding and High Performance Machining of Metal Material,Guangzhou 510006, China; 3. Guangdong Engineering and Technology Research Centre for Strengthen Grinding and High Performance Micro-nanomachining, Guangzhou University, Guangzhou 510006, China 
CHEN You-cheng 1. School of Mechanical & Electric Engineering,Guangzhou 510006, China; 2. Guangzhou Key Laboratory for Strengthened Grinding and High Performance Machining of Metal Material,Guangzhou 510006, China; 3. Guangdong Engineering and Technology Research Centre for Strengthen Grinding and High Performance Micro-nanomachining, Guangzhou University, Guangzhou 510006, China 
摘要点击次数:
全文下载次数:
中文摘要:
      目的 探明强化研磨加工对轴承套圈表面耐蚀性的影响规律。方法 采用单一变量法改变强化研磨加工中的喷射压力,制备不同加工工艺的试样。通过电化学腐蚀实验,测试各试样在常温NaCl溶液环境下的耐蚀性,并记录相关数据。采用光学金相显微镜、维氏硬度计、X射线衍射仪分别检测试样的显微组织、显微硬度、晶粒尺寸及位错密度,并进一步分析金相组织、显微硬度与轴承套圈耐蚀性的关系。结果 在其他加工参数保持不变的前提下,强化研磨试样腐蚀速率分别为13.40、10.83、7.50 mm/a,明显低于未加工试样(18.24 mm/a)。同时,试样表层组织均匀性、强化层厚度、位错密度及显微硬度均随喷射压力的增加而增加,晶粒尺寸则随之减小。喷射压力由0.50 MPa增加至0.70 MPa时,腐蚀速率下降50%,强化层厚度则由42 μm增加至78 μm,晶粒尺寸由6.72 μm近似线性减小至3.04 μm,位错密度由14.49×1014 m–2近似线性增加至71.09×1014 m–2。而截面显微硬度随深度的变化曲线则呈交错状态。在距加工表面30 μm和90~ 110 μm处,0.60 MPa加工所得试样显微硬度最高,且最大硬化层厚度达110 μm。结论 强化研磨加工技术可使轴承套圈获得组织均匀、硬度高、位错密度大、晶粒尺寸小的致密强化表层,进而增强其表面耐蚀性。
英文摘要:
      This work aims to explore the effect of strengthen grinding process on the surface corrosion resistance of bearing ring. A single variable method was used to change the jet pressure in the strengthen grinding process to prepare samples with different processing processes. The surface corrosion resistance of each sample in NaCl at room temperature was tested by electrochemical corrosion experiment, and the relevant data was recorded. The micro-structure, micro-hardness, grain size and lattice dislocation of samples that obtained by different processing methods were detected respectively by optical metallographic microscope, Vickers hardness tester and X-ray diffractometer. And the relationships between the micro-structure, the micro- hardness and the corrosion resistance of bearing ring samples were further analyzed. On the premise of keeping other processing parameters unchanged, the corrosion rates of the samples that obtained by strengthen grinding were respectively 13.40, 10.83 and 7.50 mm/a. And they were significantly lower than that of the sample without strengthen grinding treatment (18.24 mm/a). Moreover, with the increase of jet pressure, the uniformity of surface layer tissue, thickness of strengthened layer, dislocation density and microhardness increased, while the grain size decreased. Furthermore, with the jet pressure increased from 0.50 MPa to 0.70 MPa, the corrosion rate decreased by 50%, the thickness of the strengthened layer increased from 42 μm to 78 μm, the grain size decreased approximately linearly from 6.72 μm to 3.04 μm, while the dislocation density increased approximately linearly from 14.49×1014 m–2 to 71.09×1014 m–2. The curves of cross section’s micro-hardness with depth were in a staggered state, the micro-hardness of samples processed by 0.60 MPa was the highest, and the maximum hardened layer thickness was 110 μm at the distance of 30 μm and 90 to 110 μm from the machined surface. The strengthen grinding process is a technique that can enhance the surface corrosion resistance of bearing ring by obtaining dense reinforced surface with well-closed formation, high hardness, high dislocation density and small grain size.
查看全文  查看/发表评论  下载PDF阅读器
关闭

关于我们 | 联系我们 | 投诉建议 | 隐私保护 | 用户协议

您是第20080493位访问者    渝ICP备15012534号-3

版权所有:《表面技术》编辑部 2014 surface-techj.com, All Rights Reserved

邮编:400039 电话:023-68792193传真:023-68792396 Email: bmjs@surface-techj.com

渝公网安备 50010702501715号