闫德峰,刘子艾,潘维浩,赵丹阳,宋金龙.多功能超疏水表面的制造和应用研究现状[J].表面技术,2021,50(5):1-19.
YAN De-feng,LIU Zi-ai,PAN Wei-hao,ZHAO Dan-yang,SONG Jin-long.Research Status on the Fabrication and Application of Multifunctional Superhydrophobic Surfaces[J].Surface Technology,2021,50(5):1-19
多功能超疏水表面的制造和应用研究现状
Research Status on the Fabrication and Application of Multifunctional Superhydrophobic Surfaces
投稿时间:2020-10-31  修订日期:2021-03-24
DOI:10.16490/j.cnki.issn.1001-3660.2021.05.001
中文关键词:  超疏水表面  微纳米粗糙结构  低表面能  制造方法  多功能应用
英文关键词:superhydrophobic surfaces  micro/nano rough structures  low surface energy  fabrication methods  multifunctional applications
基金项目:国家自然科学基金(51605078);中国科协青年人才托举工程(2017QNRC001);航空科学基金(2017ZE63012);大连市科技之星项目(2018RQ01)
作者单位
闫德峰 大连理工大学,辽宁 大连 116024 
刘子艾 大连理工大学,辽宁 大连 116024 
潘维浩 大连理工大学,辽宁 大连 116024 
赵丹阳 大连理工大学,辽宁 大连 116024 
宋金龙 大连理工大学,辽宁 大连 116024 
AuthorInstitution
YAN De-feng Dalian University of Technology, Dalian 116024, China 
LIU Zi-ai Dalian University of Technology, Dalian 116024, China 
PAN Wei-hao Dalian University of Technology, Dalian 116024, China 
ZHAO Dan-yang Dalian University of Technology, Dalian 116024, China 
SONG Jin-long Dalian University of Technology, Dalian 116024, China 
摘要点击次数:
全文下载次数:
中文摘要:
      荷叶表面是自然界中典型的超疏水表面,具有“出淤泥而不染”的特性,近年来,荷叶表面的超疏水现象引起了科研人员的广泛关注。普通表面经构建微纳米级粗糙结构和低表面能修饰后,可获得超疏水表面。将水滴置于超疏水表面上,水滴与超疏水表面间存在一层空气垫,空气垫可有效减小水滴与表面的接触面积,使水滴无法浸入表面微观结构中,而被“支撑”在超疏水表面上,因此超疏水表面对水表现出优异的排斥性。这种特殊性能使超疏水表面在诸多领域都有极高的应用前景和市场价值。本文对超疏水基础原理进行了梳理,并对近期超疏水领域的研究成果进行了综述。首先介绍了超疏水表面的经典润湿理论,包括Young模型、Wenzel模型和Cassie-Baxter模型。然后归纳了诸多超疏水表面的制备方法及优缺点,包括激光刻蚀法、化学沉积法、化学刻蚀法、电化学沉积法、电化学刻蚀法、热氧化法、喷涂法等。在分析不同制造方法的基础上,进一步讨论了超疏水表面在自清洁、防雾、抗结冰、耐腐蚀、液体无损转移、油水分离、摩擦发电、芯片实验室、液滴传感器等领域的应用。最后,指出超疏水表面从实验室研究走向生产应用过程中所面临的问题,并对超疏水表面的未来发展进行展望。
英文摘要:
      The upper surface of the lotus leaf is a typical superhydrophobic surface in nature world, which has the special characteristic of self-cleaning. In recent years, the superhydrophobic phenomenon on the upper surface of the lotus leaf has aroused much attention of researchers. The superhydrophobic surfaces can be obtained by constructing the mircro/nano rough structures and modification of low surface energy. Researchers found that when a water droplet is placed on the superhydrophobic surfaces, the physical barrier of air cushion is formed between a water droplet and the superhydrophobic surfaces. The air cushion can effectively reduce the contact area of water droplets with the superhydrophobic surfaces, so that the water droplet cannot be immersed in the micro/nano rough structures of superhydrophobic surfaces and is supported on the superhydrophobic surfaces, therefore the superhydrophobic surface shows special properties of waterproof. In the past few decades, researchers found that the superhydrophobic surfaces had practical application value and far-reaching prospect. This paper reviews the basic principles of superhydrophobic surfaces and the recent research achievements in the superhydrophobic fields. First of all, the classical wetting models of superhydrophobic surfaces are introduced, including the Young model, the Wenzel model and the Cassie-Baxter model. Then, the basic methods of preparing superhydrophobic surfaces are summarized, such as laser etching, chemical deposition, chemical etching, electrochemical deposition, electrochemical etching, thermal oxidation, ect. In addition, the applications of superhydrophobic surfaces, such as self-cleaning, anti-fogging, anti-icing, corrosion resistance, lossless transport of liquid, oil-water separation, triboelectric nanogenerator, lab-on-a-chip, and droplet sensor is discussed based on the analysis of different manufacturing methods. Finally, the problems needed to be resolved from the laboratory research to the industrial application of the superhydrophobic surfaces are pointed out, and the urgently demanded research focus and promising development trend of this field are prospected.
查看全文  查看/发表评论  下载PDF阅读器
关闭

关于我们 | 联系我们 | 投诉建议 | 隐私保护 | 用户协议

您是第20030699位访问者    渝ICP备15012534号-3

版权所有:《表面技术》编辑部 2014 surface-techj.com, All Rights Reserved

邮编:400039 电话:023-68792193传真:023-68792396 Email: bmjs@surface-techj.com

渝公网安备 50010702501715号