黄晓林,魏荣华,林健凉,Robert Castillo,赵文涛.等离子体增强磁控溅射制备TiAlVSiCN涂层的抗冲蚀性能[J].表面技术,2021,50(4):253-259.
HUANG Xiao-lin,WEI Rong-hua,LIN Jian-liang,Robert,Castillo,ZHAO Wen-tao.Erosion Resistance Properties of TiAlVSiCN Coatings Prepared byPlasma Enhanced Magnetron Sputtering[J].Surface Technology,2021,50(4):253-259
等离子体增强磁控溅射制备TiAlVSiCN涂层的抗冲蚀性能
Erosion Resistance Properties of TiAlVSiCN Coatings Prepared byPlasma Enhanced Magnetron Sputtering
投稿时间:2020-04-26  修订日期:2020-06-17
DOI:10.16490/j.cnki.issn.1001-3660.2021.04.025
中文关键词:  等离子体增强  磁控溅射  TiAlVSiCN  纳米复合涂层  抗冲蚀性能  纳米晶  非晶
英文关键词:plasma enhanced  magnetron sputtering  TiAlVSiCN  nanocomposite coating  erosion resistance  nanocrystalline  amorphous
基金项目:
作者单位
黄晓林 北京三聚环保新材料股份有限公司 科技发展部,北京100080 
魏荣华 西南研究院 机械工程部,美国 德克萨斯州 圣安东尼奥 78238 
林健凉 西南研究院 机械工程部,美国 德克萨斯州 圣安东尼奥 78238 
Robert Castillo 西南研究院 机械工程部,美国 德克萨斯州 圣安东尼奥 78238 
赵文涛 北京三聚环保新材料股份有限公司 科技发展部,北京100080 
AuthorInstitution
HUANG Xiao-lin Department of Science and Technology Development, Beijing Sanju Environmental Protection and New Materials, Inc., Beijing 100080, China 
WEI Rong-hua Mechnical Engineering Division, Southwest Research Institute, San Antonio, Texas, 78238, United States 
LIN Jian-liang Mechnical Engineering Division, Southwest Research Institute, San Antonio, Texas, 78238, United States 
Robert,Castillo Mechnical Engineering Division, Southwest Research Institute, San Antonio, Texas, 78238, United States 
ZHAO Wen-tao Department of Science and Technology Development, Beijing Sanju Environmental Protection and New Materials, Inc., Beijing 100080, China 
摘要点击次数:
全文下载次数:
中文摘要:
      目的 提高不锈钢基体的抗固体颗粒冲蚀性能。方法 在不锈钢基体表面,通过等离子体增强磁控溅射系统(PEMS),采用不同偏压工艺制备TiAlVSiCN纳米复合涂层。通过SEM、HRTEM观察涂层的微观形貌与组织,利用XRD、SAD分析涂层的物相组成与晶体结构,并通过划痕仪、纳米硬度计以及冲蚀试验机探究不同工艺涂层的结合强度、纳米硬度以及抗冲蚀性能差异。结果 采用PEMS制备出一系列不同偏压条件下的TiAlVSiCN涂层,涂层组织致密,呈柱状,主要包括纳米晶Ti(Al,V)(C,N)相和非晶相。偏压显著影响涂层的晶粒尺寸和非晶相分布,高偏压下的涂层主要由20~50 nm的Ti(Al,V)(C,N)纳米晶及其周围弥散分布的非晶相组成,而低偏压下的涂层主要由100 nm的Ti(Al,V)(C,N)纳米晶和连续分布的非晶相组成。高偏压下制备的涂层厚度超过20 μm,纳米硬度可达(34.6±14.1) GPa,具有优良的结合强度(>65 N)和抗冲蚀性能,其抗冲蚀性能相比不锈钢基体提高近8倍。结论 通过与偏压参数的匹配控制,PEMS可有效调控纳米复合涂层的组织结构,实现硬度与弹性模量的良好匹配,制备出具有优良抗冲蚀性能、厚度达到20 μm以上的TiAlVSiCN纳米晶-非晶复合涂层。
英文摘要:
      This paper aims to enhance the solid particles erosion resistance of stainless steel. A series of TiAlVSiCN coatings were prepared using plasma enhanced magnetron sputter (PEMS) deposition by employing different bias method. The coatings were analyzed using X-ray diffraction (XRD), scanning electron microscopy (SEM) and high resolution transmission electron microscopy (TEM) to characterize the surface morphologies, phase and microstructures, while the nanohardness, critical loads and erosion resistance were conducted using a nanoindentation, a scratch tester and a solid particle blaster. Results showed that the TiAlVSiCN coatings prepared by PEMS using a series of different biases are composed by nanocrystalline Ti(Al,V)(C,N) and amorphous with a compact column structure. The bias affects the size of crystalline grain and distrubtion of amorphous evidently, the coatings prepared under high bias are found to be a nanocomposite structure with grain size of 20~50 nm nanocrystalline Ti(Al,V)(C,N) dispersed in a matrix of amorphous, while under low bias the Ti(Al,V)(C,N) grain size varies to 100 nm and the amorphous gathers in a continuous zone. The thickness of the coating prepared under high bias is over 20 μm, the nanohardness reaches to (34.6±14.1) GPa, and the coatings exhibits excellent adhesion (>65 N) and erosion resistance, for the erosion resistance enhanced by 8 times compared with the stainless steel. By compromising with bias, PEMS can effectively control the structure of nanocomposite coatings, thus eventually making a good match of the hardness and elastic modulus properties, and the nanocrystalline-amorphous TiAlVSiCN coatings with thickness over 20 μm and excellent erosion resistance are prepared.
查看全文  查看/发表评论  下载PDF阅读器
关闭

关于我们 | 联系我们 | 投诉建议 | 隐私保护 | 用户协议

您是第19496621位访问者    渝ICP备15012534号-3

版权所有:《表面技术》编辑部 2014 surface-techj.com, All Rights Reserved

邮编:400039 电话:023-68792193传真:023-68792396 Email: bmjs@surface-techj.com

渝公网安备 50010702501715号