李嘉栋,林冰,张世贵,王莹莹,朱元强,聂臻,唐鋆磊.弹性应力下304L不锈钢点蚀行为的有限元模拟研究[J].表面技术,2021,50(2):327-337.
LI Jia-dong,LIN Bing,ZHANG Shi-gui,WANG Ying-ying,ZHU Yuan-qiang,NIE Zhen,TANG Jun-lei.Study on Finite Element Simulation of Pitting Behavior of 304L Stainless Steel under Elastic Tensile Stress[J].Surface Technology,2021,50(2):327-337
弹性应力下304L不锈钢点蚀行为的有限元模拟研究
Study on Finite Element Simulation of Pitting Behavior of 304L Stainless Steel under Elastic Tensile Stress
投稿时间:2020-10-15  修订日期:2020-12-28
DOI:10.16490/j.cnki.issn.1001-3660.2021.02.035
中文关键词:  有限元  弹性拉应力  304L不锈钢  点蚀  应力集中  最大等效应力
英文关键词:finite element  elastic tensile stress  304L stainless steel  pitting  stress concentration  maximum equivalent stress
基金项目:西南石油大学2020年“启航计划”(618)
作者单位
李嘉栋 西南石油大学 化学化工学院,成都 610500 
林冰 西南石油大学 化学化工学院,成都 610500 
张世贵 中国航发航空科技股份有限公司,成都 610500 
王莹莹 西南石油大学 化学化工学院,成都 610500 
朱元强 西南石油大学 化学化工学院,成都 610500 
聂臻 中国石油集团科学技术研究院有限公司,北京 100083 
唐鋆磊 西南石油大学 化学化工学院,成都 610500 
AuthorInstitution
LI Jia-dong School of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, China 
LIN Bing School of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, China 
ZHANG Shi-gui AECC AERO Science and Technology Co., Ltd, Chengdu 610500, China 
WANG Ying-ying School of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, China 
ZHU Yuan-qiang School of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, China 
NIE Zhen Research Institute of Science and Technology Co., Ltd, PetroChina Group, Beijing 100083, China 
TANG Jun-lei School of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, China 
摘要点击次数:
全文下载次数:
中文摘要:
      目的 通过有限元理想化建模和模拟计算,采用四点弯曲的应力加载方式,获得了不同弹性拉应力条件下,304L不锈钢薄板上点蚀坑内最大等效应力的变化规律和点蚀坑几何形状的变化情况,以及采用轴向拉伸的应力加载方式,获得了不同弹性拉应力条件下,304L不锈钢管道上随着蚀坑形状和尺寸的变化,点蚀坑内最大等效应力的变化规律。方法 采用有限元法分别构建出具有半球体、圆锥体或圆柱体点蚀缺陷的304L不锈钢薄板和管道模型,并采用有限元仿真的方法系统研究了不同弹性拉应力对304L不锈钢薄板和管道模型上点蚀坑内的应力分布规律,以及通过模拟计算得出点蚀坑内最大等效应力的变化情况,用以分析点蚀在力学影响下的生长扩展机理。结果 随着弹性拉应力的增加,304L不锈钢薄板模型上半球体点蚀坑内的最大等效应力从68.508 MPa增至328 MPa,圆锥体点蚀坑内的最大等效应力从115.960 MPa增至554.610 MPa,圆柱体点蚀坑内的最大等效应力从97.244 MPa增至466.200 MPa。半球体、圆锥体和圆柱体点蚀坑的最大等效应力增长斜率分别为2.01、3.40、2.86。随着弹性拉应力的增加,304L不锈钢表面产生的点蚀坑逐渐从应力集中区域延伸扩展,从而发生形状改变。此外,在点蚀坑尺寸相似的情况下,304L不锈钢管道模型上半球体和圆锥体点蚀坑,在无轴向弹性拉应力作用下的最大等效应力分别为26.421、49.029 MPa,在轴向弹性拉应力作用下的最大等效应力分别为135.920、300.850 MPa。但当点蚀坑尺寸增大时,圆锥体点蚀坑的最大等效应力在无轴向弹性拉应力条件下从49.029 MPa下降到36.355 MPa,在轴向弹性拉应力作用下从135.920 MPa下降至212.140 MPa。结论 随着弹性拉应力的增加,304L不锈钢薄板模型上半球体、圆锥体和圆柱体点蚀坑内的最大等效应力逐渐增加,其中圆锥体点蚀坑内的最大等效应力最高。此外,随着弹性拉应力的增加,304L不锈钢表面产生的点蚀坑形状在应力集中的影响下逐渐从圆孔形状转变为长条形状。在不同的弹性拉应力条件下,304L不锈钢管道模型上圆锥体点蚀均比半球体点蚀的应力集中程度更大并且最大等效应力更高。但是,随着圆锥体点蚀坑尺寸的增加,点蚀坑内的最大等效应力逐渐减小。
英文摘要:
      Through the idealized finite element modeling and simulation calculation, four point bending stress loading method was used to obtain the maximum equivalent stress and the change of pitting pit geometry in 304L stainless steel sheet under different elastic tensile stress conditions, and the axial tensile stress loading method was used to obtain the change law of maximum equivalent stress with the change of shape and size in the pitting pit on 304L stainless steel pipe under different elastic tensile stress conditions, . The models of 304L stainless steel sheet and pipe with hemispherical, cone or cylinder pitting defects are constructed by using finite element method. The stress distribution in pitting pits of 304L stainless steel sheet and pipe model under different elastic tensile stress is systematically studied by using finite element simulation method, and the change of maximum equivalent stress in pitting pit is obtained by simulation calculation in order to analyze the growth and propagation mechanism of pitting under the influence of mechanics. With the increase of elastic tensile stress, the maximum equivalent stress in the hemispherical pit of 304L stainless steel model increases from 68.508 MPa to 328 MPa, that in the cone pit increases from 115.960 MPa to 554.610 MPa, and that in the cylinder pit increases from 97.244 MPa to 466.200 MPa. The maximum equivalent stress growth slopes of the hemisphere, cone and cylinder are 2.01, 3.40 and 2.86, respectively. Moreover, with the increase of the elastic tensile stress, the pitting pits on the surface of 304L stainless steel gradually extend from the stress concentration area, resulting in the shape change. In addition, under the condition of similar pit size, the maximum equivalent stress of the hemisphere and cone of 304L stainless steel pipe model is 26.421 MPa and 49.029 MPa without axial elastic tensile stress, and 135.920 MPa and 300.850 MPa under the action of axial elastic tensile stress. However, with the increase of pit size, the maximum equivalent stress of cone pit decreases from 49.029 MPa to 36.355 MPa without axial elastic tensile stress, and decreases from 212.140 MPa to 135.920 MPa under the action of axial elastic tensile stress. It can be concluded that with the increase of elastic tensile stress, the maximum equivalent stress in the pitting pits of hemisphere, cone and cylinder on 304L stainless steel sheet model increases gradually, with the highest in the cone pit. Moreover, with the increase of elastic tensile stress, the pitting pit shape on the surface of 304L stainless steel gradually changes from the round hole to the strip under the influence of stress concentration. Under different elastic tensile stress conditions, the stress concentration and maximum equivalent stress of the cone pitting on 304L stainless steel pipe model are higher than that of the hemispherical pitting. However, the maximum equivalent stress in the pit decreases with the increase of the pit size.
查看全文  查看/发表评论  下载PDF阅读器
关闭

关于我们 | 联系我们 | 投诉建议 | 隐私保护 | 用户协议

您是第20065449位访问者    渝ICP备15012534号-3

版权所有:《表面技术》编辑部 2014 surface-techj.com, All Rights Reserved

邮编:400039 电话:023-68792193传真:023-68792396 Email: bmjs@surface-techj.com

渝公网安备 50010702501715号