景鹏飞,俞树荣,宋伟,尘强,张克菲.DLC薄膜对TC4钛合金微动磨损行为的影响[J].表面技术,2021,50(2):261-270.
JING Peng-fei,YU Shu-rong,SONG Wei,CHEN Qiang,ZHANG Ke-fei.Effect of DLC Film on Fretting Wear Behavior of TC4 Titanium Alloy[J].Surface Technology,2021,50(2):261-270
DLC薄膜对TC4钛合金微动磨损行为的影响
Effect of DLC Film on Fretting Wear Behavior of TC4 Titanium Alloy
投稿时间:2020-04-08  修订日期:2020-07-16
DOI:10.16490/j.cnki.issn.1001-3660.2021.02.027
中文关键词:  TC4钛合金  DLC薄膜  微动磨损  磨损机制
英文关键词:TC4 titanium alloy  DLC film  fretting wear  wear mechanism
基金项目:国家自然科学基金资助项目(51275225)
作者单位
景鹏飞 兰州理工大学 石油化工学院,兰州 730050 
俞树荣 兰州理工大学 石油化工学院,兰州 730050 
宋伟 兰州理工大学 石油化工学院,兰州 730050 
尘强 兰州理工大学 石油化工学院,兰州 730050 
张克菲 兰州理工大学 石油化工学院,兰州 730050 
AuthorInstitution
JING Peng-fei School of Petrochemical Technology, Lanzhou University of Technology, Lanzhou 730050, China 
YU Shu-rong School of Petrochemical Technology, Lanzhou University of Technology, Lanzhou 730050, China 
SONG Wei School of Petrochemical Technology, Lanzhou University of Technology, Lanzhou 730050, China 
CHEN Qiang School of Petrochemical Technology, Lanzhou University of Technology, Lanzhou 730050, China 
ZHANG Ke-fei School of Petrochemical Technology, Lanzhou University of Technology, Lanzhou 730050, China 
摘要点击次数:
全文下载次数:
中文摘要:
      目的 为提高TC4钛合金的抗微动磨损性能,对比研究类金刚石薄膜(DLC)和TC4钛合金在干摩擦条件下的微动磨损行为,揭示DLC薄膜抗微动磨损的机理。方法 在TC4钛合金基体上利用非平衡磁控溅射技术制备DLC薄膜。利用原子力显微镜、拉曼光谱和纳米压痕仪分析薄膜的表面形貌、物相组成以及纳米硬度。利用球/平面接触形式SRV-V微动摩擦磨损试验机研究DLC薄膜和TC4钛合金的微动摩擦磨损性能。采用激光共聚焦显微镜和自带能谱分析仪的场发射扫描电镜分析材料的磨痕情况。通过Ft-D-N曲线、三维轮廓、磨损形貌及磨痕化学成分分析来揭示DLC薄膜和TC4钛合金微动损伤机理。结果 DLC薄膜与TC4钛合金相比,摩擦因数和磨损体积都很小。载荷为10 N 时,DLC薄膜的摩擦因数为0.01~0.03,TC4钛合金的摩擦因数为0.07~0.12。从磨损率来看,TC4钛合金的磨损率随着位移幅值的增大而增大,DLC薄膜的磨损率随着位移幅值的增大而减小。位移幅值为100 μm时,TC4钛合金的磨损率取得最大值(5.02×10−5 mm3/(N∙m)),DLC薄膜的磨损率取得最小值(6.70×10−8 mm3/(N∙m))。TC4钛合金磨损严重,磨损机制为粘着磨损、磨粒磨损、疲劳剥层和氧化磨损,同时伴随有塑性变形;而DLC薄膜磨损轻微,磨损机制以磨粒磨损为主。结论 DLC薄膜具有较高的硬度和良好的润滑特性。在干摩擦条件下,DLC薄膜可以显著提高TC4钛合金的抗微动磨损性能。
英文摘要:
      To improve the fretting wear resistance of TC4 titanium alloy, DLC films were deposited on TC4 titanium alloy by unbalanced magnetron sputtering technology. The fretting wear behavior of DLC film and TC4 titanium alloy were comparatively investigated in a condition of dry friction, which reveals the mechanism of DLC film on the fretting wear resistance. The surface morphology, phase composition and nano-hardness of the films were analyzed by atomic force microscope, Raman spectroscopy and Nanoindentation tester. The fretting friction and wear performance of DLC film or TC4 alloy was studied by SRV-V fretting friction tester with a ball/plane contact configuration. The wear tracks of the materials were characterized by laser confocal microscope and field emission scanning electron microscope with DES analysis. The fretting damage mechanism was revealed by the analysis of Ft-D-N curve, three-dimensional profile, wear morphology and wear chemical composition. Compared with TC4 alloy, the DLC film exhibited very low friction coefficient and wear volume. At a normal load of 10 N, friction coefficient of the DLC film ranged between 0.01~0.03 while that of TC4 substrate ranged between 0.07~0.12. The wear rate of TC4 titanium alloy increased with increased displacement amplitude. In contrast, the wear rate of DLC film decreased with increased displacement amplitude. Under the displacement amplitude of 100 μm, the wear rate of the TC4 alloy was largest as 5.02×10−5 mm3/(N∙m), while that of the DLC film was the lowest as 6.70×10−8 mm3/(N∙m). The wear of TC4 alloy was serious and the wear mechanism is adhesive wear, abrasive wear, fatigue peeling and oxidative wear, accompanied by plastic deformation, while the wear of DLC film was slight and the wear mechanism is dominated by abrasive wear. It can be concluded that DLC film has higher hardness and good lubricating properties. Under dry friction conditions, the DLC film can effectively improve the fretting wear resistance of TC4 alloy.
查看全文  查看/发表评论  下载PDF阅读器
关闭

关于我们 | 联系我们 | 投诉建议 | 隐私保护 | 用户协议

您是第20102612位访问者    渝ICP备15012534号-3

版权所有:《表面技术》编辑部 2014 surface-techj.com, All Rights Reserved

邮编:400039 电话:023-68792193传真:023-68792396 Email: bmjs@surface-techj.com

渝公网安备 50010702501715号