纪敬虎,邓智文,陈天阳,房鲁南,符永宏.局部织构无限长可倾瓦推力轴承流体动压润滑分析[J].表面技术,2021,50(2):246-253.
JI Jing-hu,DENG Zhi-wen,CHEN Tian-yang,FANG Lu-nan,FU Yong-hong.Analysis of Hydrodynamic Lubrication of Partially Textured Infinitely Long Tilting Pad Thrust Bearing[J].Surface Technology,2021,50(2):246-253
局部织构无限长可倾瓦推力轴承流体动压润滑分析
Analysis of Hydrodynamic Lubrication of Partially Textured Infinitely Long Tilting Pad Thrust Bearing
投稿时间:2020-02-08  修订日期:2020-05-16
DOI:10.16490/j.cnki.issn.1001-3660.2021.02.025
中文关键词:  局部织构化  可倾瓦推力轴承  动压润滑  承载能力
英文关键词:partial texturing  tilting pad thrust bearing  hydrodynamic lubrication  loading capacity
基金项目:国家自然科学基金项目(51775248, 51975252);镇江市重大科技专项(ZD2018001);镇江市高技术研究重点实验室项目(SS2018007);江苏大学高级人才启动基金(13JDG090)
作者单位
纪敬虎 江苏大学,江苏 镇江 212013 
邓智文 江苏大学,江苏 镇江 212013 
陈天阳 江苏大学,江苏 镇江 212013 
房鲁南 江苏大学,江苏 镇江 212013 
符永宏 江苏大学,江苏 镇江 212013 
AuthorInstitution
JI Jing-hu Jiangsu University, Zhenjiang 212013, China 
DENG Zhi-wen Jiangsu University, Zhenjiang 212013, China 
CHEN Tian-yang Jiangsu University, Zhenjiang 212013, China 
FANG Lu-nan Jiangsu University, Zhenjiang 212013, China 
FU Yong-hong Jiangsu University, Zhenjiang 212013, China 
摘要点击次数:
全文下载次数:
中文摘要:
      目的 研究局部凹坑织构对无限长可倾瓦推力轴承的流体动压润滑性能的影响。方法 基于质量守恒空化边界条件的雷诺方程,建立了局部凹坑织构无限长可倾瓦推力轴承动压润滑二维理论模型。采用多重网格法求解雷诺方程,模拟局部凹坑织构无限长可倾瓦推力轴承的流体动压分布,分析局部织构比、位置比、深度、水平间距及数量对流体动压润滑性能的影响。结果 所建立的二维局部织构无限长可倾瓦推力轴承理论模型的数值解与解析解误差较小,能够有效地分析油膜流体动压润滑性能。当收敛比较小时,在入口区进行局部微凹坑织构化处理能增强流体动压润滑效应,并存在最优局部织构比使得油膜承载能力达到最大;而当收敛比较大时,局部微凹坑织构对油膜承载能力的影响较小。油膜承载能力随着局部织构位置比的增大而逐渐减小。存在最优凹坑深度能够最大化轴承的承载能力,并且最佳凹坑深度随着收敛比的增加而减小。油膜承载能力随着凹坑纵向间距的增大而减小,随着凹坑数目的增大而增大。结论 局部织构能够有效地改善可倾瓦推力轴承的摩擦学性能,增强轴承的承载能力,而局部织构的几何参数与轴瓦的收敛比相互影响,存在着最优织构几何参数和收敛比的组合能够最大化轴承的承载能力。
英文摘要:
      The paper studied the effect of partial dimple texture on the hydrodynamic lubrication performance of infinitely long tilting pad thrust bearing. Based on the Reynolds equation with the boundary condition of mass conservation cavitation, a two-dimensional theoretical model of hydrodynamic lubrication of partially dimple textured infinitely long tilting pad thrust bearing was developed. The Reynolds equation was solved by multi-grid method to simulate the hydrodynamic pressure distribution of partially dimple textured infinitely long tilting pad thrust bearing. Finally, the influence of area fraction ratio, location, depth, horizontal spacing and number of partial texture on hydrodynamic pressure lubrication performance were analyzed. The results showed that the error between the numerical solution which obtained by the two-dimensional partially textured infinitely long tilting pad thrust bearing model and analytical solution is small, so the hydrodynamic pressure lubrication performance of oil film can be effectively analyzed. When the convergence ratio is small, the effect of hydrodynamic lubrication can be enhanced by partial micro-dimple texture processed in the inlet region, and there is an optimal partial texture area fraction ratio to maximize the loading capacity of the oil film. However, when the convergence ratio is relatively large, the partial micro-dimple texture has little effect on the loading capacity of the oil film. The loading capacity of the oil film decreases with the increase of partial texture aspect ratio; the optimal depth of dimples can maximize the loading capacity of the thrust bearing, and the optimal depth of dimples decreases with the increase of convergence ratio. The loading capacity of the oil film decreases with the increase of the longitudinal spacing of the dimples and increases with the increase of the number of the dimples. The partial texture can effectively improve the tribological properties of tilting pad thrust bearing and enhance the loading capacity of the bearing. However, the geometric parameters of the partial texture interact with the convergence ratio of the bearing, and the optimal value of the combination of texture geometric parameters and the convergence ratio can maximize the loading capacity of the bearing.
查看全文  查看/发表评论  下载PDF阅读器
关闭

关于我们 | 联系我们 | 投诉建议 | 隐私保护 | 用户协议

您是第19954830位访问者    渝ICP备15012534号-3

版权所有:《表面技术》编辑部 2014 surface-techj.com, All Rights Reserved

邮编:400039 电话:023-68792193传真:023-68792396 Email: bmjs@surface-techj.com

渝公网安备 50010702501715号