王彦骅,吴玉国,张绍川,张婉莹.π型管的冲刷腐蚀数值模拟[J].表面技术,2020,49(12):259-266.
WANG Yan-hua,WU Yu-guo,ZHANG Shao-chuan,ZHANG Wan-ying.Numerical Simulation of Erosion Prediction in π-shaped Tube[J].Surface Technology,2020,49(12):259-266
π型管的冲刷腐蚀数值模拟
Numerical Simulation of Erosion Prediction in π-shaped Tube
投稿时间:2019-12-17  修订日期:2020-03-01
DOI:10.16490/j.cnki.issn.1001-3660.2020.12.030
中文关键词:  π型管  冲蚀磨损  数值模拟  液固两相流  最大冲蚀率
英文关键词:π-shaped tube  erosion wear  numerical simulation  liquid-solid two-phase flow  maximum erosion rate
基金项目:国家自然科学基金项目(51046002);辽宁省教育厅科学研究项目(L2015306)
作者单位
王彦骅 辽宁石油化工大学 石油天然气工程学院,辽宁 抚顺 113006 
吴玉国 辽宁石油化工大学 石油天然气工程学院,辽宁 抚顺 113006 
张绍川 辽宁石油化工大学 石油天然气工程学院,辽宁 抚顺 113006 
张婉莹 辽宁石油化工大学 石油天然气工程学院,辽宁 抚顺 113006 
AuthorInstitution
WANG Yan-hua School of Petroleum Engineering, Liaoning Shihua University, Fushun 113006, China 
WU Yu-guo School of Petroleum Engineering, Liaoning Shihua University, Fushun 113006, China 
ZHANG Shao-chuan School of Petroleum Engineering, Liaoning Shihua University, Fushun 113006, China 
ZHANG Wan-ying School of Petroleum Engineering, Liaoning Shihua University, Fushun 113006, China 
摘要点击次数:
全文下载次数:
中文摘要:
      目的 基于液固两相流体在管道流输的情况,研究π型管在不同影响因素作用下的冲刷腐蚀程度。方法 目前对π型管的研究尚少,因此确定模型为π型管。针对输气管道中π型管冲蚀磨损失效的问题,运用Ansys fluent软件中的DPM模型和k-ε模型,针对通入气液两相流介质时,液体中颗粒冲击π型管壁面的问题开展数值模拟研究。运用控制变量(管道进口流速、颗粒质量流量、颗粒直径)的方法,观察不同参数对π型管磨损的影响情况。结果 π型管存在A、B两处腐蚀。在一定范围内增加π型管的入口流速,整体最大冲蚀率也发生明显改变,且逐渐递增。在一定范围内增加π型管内固体颗粒粒径,整体最大冲蚀率也发生明显改变,且逐渐减少。在一定范围内增加π型管的质量流量,整体最大冲蚀率也发生明显改变,且逐渐递增。结论 A处的腐蚀范围大于B处的腐蚀范围。整体的最大冲蚀率随着流速的增大而增大。速度越大,流体的曳力越强,对腐蚀程度造成的影响越大。整体的最大冲蚀率随着质量流量的增大而增大。速度增长与最大腐蚀率近似可以看成线性增长,存在正相关关系。改变几组不同粒径颗粒的质量流量,观察整体最大冲蚀率与质量流量近似成线性相关,存在正相关关系。整体的最大冲蚀率随着颗粒直径的减少而逐渐减弱。颗粒直径越小,流体所携带的颗粒能力越强,造成的腐蚀程度越强。通过对比分析不同参数腐蚀程度,从而预测出冲蚀最容易发生腐蚀的位置为A、B两个弯头处。
英文摘要:
      The work aims to study the erosion corrosion degree of π-shaped tube under different influence factors based on the situation of liquid-solid two-phase flow in pipeline. The model was determined as π-shaped tube due to little research on π-shaped tube. In order to solve the problem of erosion and wear failure of π-shaped tube in gas pipelines, DPM model and k-ε model in Ansys fluent software were used to carry out numerical simulation to study the impact of particles in liquid on π-tube wall when gas-liquid two-phase flow medium was introduced. The methods of controlling variables (flow velocity at the inlet of pipeline, mass flow rate of particles, particle diameter) were adopted. The effect of different parameters on wear of π-shaped tube was observed. π-shaped tube had corrosion in parts A and B. As the inlet velocity of the tube increases in a certain range, the overall maximum erosion rate also changed significantly and increased gradually. With the increase of solid particle size in a certain range, the overall maximum erosion rate also changed significantly and gradually decreased. As the mass flow rate of the tube increased in a certain range, the overall maximum erosion rate also changed significantly and increased gradually. The corrosion range at A is greater than that at B. The overall maximum erosion rate increases with the increase of velocity. The greater velocity leads to the stronger drag force of the fluid and the greater effect on the corrosion degree. The maximum erosion rate of the π-shaped tube increases with the growth of mass flow rate. The velocity growth and the maximum corrosion rate can be defined by linear growth, and there is a positive correlation. The mass flow rate of several groups of particles with different sizes is changed, and the overall maximum erosion rate has an approximately linear correlation with mass flow rate, which is a positive correlation. The maximum erosion rate of the π-shaped tube increases with the growth of particle diameter. The smaller particle diameter leads to the stronger particle capacity carried by the fluid and the stronger corrosion degree. By comparing and analyzing the corrosion degree of different parameters, it can be predicted that the most vulnerable corrosion locations are elbow A and elbow B.
查看全文  查看/发表评论  下载PDF阅读器
关闭

关于我们 | 联系我们 | 投诉建议 | 隐私保护 | 用户协议

您是第20116102位访问者    渝ICP备15012534号-3

版权所有:《表面技术》编辑部 2014 surface-techj.com, All Rights Reserved

邮编:400039 电话:023-68792193传真:023-68792396 Email: bmjs@surface-techj.com

渝公网安备 50010702501715号