王卫强,王博,陈一鸣,康凯,王静,范开锋.横向间断肋条湍流减阻大涡模拟分析[J].表面技术,2020,49(11):226-235.
WANG Wei-qiang,WANG Bo,CHEN Yi-ming,KANG Kai,WANG Jing,FAN Kai-feng.Large Eddy Simulation Analysis of Turbulent Drag Reduction for Transverse Discontinuous Ribs[J].Surface Technology,2020,49(11):226-235
横向间断肋条湍流减阻大涡模拟分析
Large Eddy Simulation Analysis of Turbulent Drag Reduction for Transverse Discontinuous Ribs
投稿时间:2019-10-04  修订日期:2020-03-24
DOI:10.16490/j.cnki.issn.1001-3660.2020.11.026
中文关键词:  肋条减阻  沟槽  连续肋条  间断肋条  大涡模拟  亚格子尺度模型
英文关键词:rib drag reduction  groove  discontinuous rib  large eddy simulation  sub-grid scale model
基金项目:辽宁省公益研究基金(20170047);辽宁省教育厅基础科研项目(31006858)
作者单位
王卫强 辽宁石油化工大学,辽宁 抚顺 113001 
王博 辽宁石油化工大学,辽宁 抚顺 113001 
陈一鸣 辽宁石油化工大学,辽宁 抚顺 113001 
康凯 辽宁石油化工大学,辽宁 抚顺 113001;中国科学院工程热物理研究所,北京 100190 
王静 上海理工大学,上海 200093 
范开锋 辽宁石油化工大学,辽宁 抚顺 113001 
AuthorInstitution
WANG Wei-qiang Liaoning Shihua University, Fushun 113001, China 
WANG Bo Liaoning Shihua University, Fushun 113001, China 
CHEN Yi-ming Liaoning Shihua University, Fushun 113001, China 
KANG Kai Liaoning Shihua University, Fushun 113001, China;Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing 100190, China 
WANG Jing University of Shanghai for Science and Technology, Shanghai 200093, China 
FAN Kai-feng Liaoning Shihua University, Fushun 113001, China 
摘要点击次数:
全文下载次数:
中文摘要:
      目的 通过改变肋条结构,提高传统肋条的减阻效果。方法 基于Walsh肋条减阻实验,利用LES理论的WALE模型以及PISO算法,对传统连续肋条及新型间断肋条进行了仿真模拟计算,其中梯度求解基于Green-Gauss节点格式,压力求解采用二阶格式,动量方程求解采用中心差分格式,时间离散采用二阶隐式格式。通过对比分析两种不同肋条结构流场湍流流动的细节及肋条的减阻率,探究新型肋条结构的减阻作用和机理。结果 LES方法准确地再现了Wlash实验的流场细节及计算结果,相同计算条件下,传统连续肋条表面摩擦减阻率和黏性减阻率均为4.641%,而新型间断肋条表面摩擦减阻与黏性减阻率高达9.317%和6.306%。结论 新型间断肋条相较于传统连续肋条的表面摩擦减阻率和黏性减阻率皆得到了较大的提升。新型间断肋条具有较高的减阻率是由于横向肋条阻断作用使得大涡旋受到抑制而分裂成较小的涡旋,降低了近壁面流体的流速,减弱了湍流扰动对流体的影响,使低速流体更加稳定的发展。
英文摘要:
      The work aims to improve the drag reduction effect of traditional ribs by changing the rib structure. Based on the Walsh rib drag reduction experiment, the WALE model of LES theory and the PISO algorithm were used to simulate and calculate the traditional continuous ribs and new discontinuous ribs. The gradient solution was based on the Green-Gauss node format, the pressure solution adopted a second-order format, the momentum equation was solved with a central difference format, and the time dispersion used a second-order implicit format. By comparing and analyzing the details of the turbulent flow in the flow field of two different rib structures and the drag reduction rate of the ribs, the drag reduction effect and mechanism of the new rib structure were explored. LES method accurately reproduced the flow field details and calculation results of the Wlash experiment. Under the same calculation conditions, the surface friction reduction rate and viscosity reduction rate of traditional continuous ribs were both 4.641%, while the frictional drag reduction and viscous drag reduction rate of new discontinuous ribs were as high as 9.317% and 6.306%. Compared with the traditional continuous ribs, the new discontinuous ribs have greatly improved the surface friction reduction rate and the viscosity reduction rate. The new discontinuous ribs have a higher drag reduction rate due to the lateral rib blocking effect, which causes the large vortex to be suppressed and split into smaller vortices, thus reducing the flow velocity of the near-wall fluid and weakening the influence of turbulent disturbance on the fluid to make low-speed fluids develop more stably.
查看全文  查看/发表评论  下载PDF阅读器
关闭

关于我们 | 联系我们 | 投诉建议 | 隐私保护 | 用户协议

您是第20100876位访问者    渝ICP备15012534号-3

版权所有:《表面技术》编辑部 2014 surface-techj.com, All Rights Reserved

邮编:400039 电话:023-68792193传真:023-68792396 Email: bmjs@surface-techj.com

渝公网安备 50010702501715号