刘韬,刘莹,底月兰,王海斗,郑博源.3Cr13不锈钢微纳表面制备及疏水机理分析[J].表面技术,2020,49(7):112-119.
LIU Tao,LIU Ying,DI Yue-lan,WANG Hai-dou,ZHENG Bo-yuan.Preparation and Hydrophobic Mechanism Analysis of 3Cr13 Stainless Steel Surface with Micro-Nano Structure[J].Surface Technology,2020,49(7):112-119
3Cr13不锈钢微纳表面制备及疏水机理分析
Preparation and Hydrophobic Mechanism Analysis of 3Cr13 Stainless Steel Surface with Micro-Nano Structure
投稿时间:2019-10-22  修订日期:2020-07-20
DOI:10.16490/j.cnki.issn.1001-3660.2020.07.014
中文关键词:  3Cr13不锈钢  喷砂  化学刻蚀  疏水性能  表面形貌
英文关键词:3Cr13 stainless steel  sand blasting  chemical etching  hydrophobic property  morphology
基金项目:国防科技创新特区项目支持;装备预先研究项目基金
作者单位
刘韬 1.南昌大学 机电工程学院,南昌 330000;2.陆军装甲兵学院 装备再制造技术国防科技重点实验室,北京 100072 
刘莹 1.南昌大学 机电工程学院,南昌 330000 
底月兰 2.陆军装甲兵学院 装备再制造技术国防科技重点实验室,北京 100072 
王海斗 2.陆军装甲兵学院 装备再制造技术国防科技重点实验室,北京 100072 
郑博源 2.陆军装甲兵学院 装备再制造技术国防科技重点实验室,北京 100072;3.中国地质大学(北京)工程技术学院,北京 100084 
AuthorInstitution
LIU Tao 1.School of Mechatronics Engineering, Nanchang University, Nanchang 330000, China; 2.Key Laboratory of National Defense Science and Technology for Equipment Remanufacturing Technology, Academy of Army Armored Forces, Beijing 100072, China 
LIU Ying 1.School of Mechatronics Engineering, Nanchang University, Nanchang 330000, China 
DI Yue-lan 2.Key Laboratory of National Defense Science and Technology for Equipment Remanufacturing Technology, Academy of Army Armored Forces, Beijing 100072, China 
WANG Hai-dou 2.Key Laboratory of National Defense Science and Technology for Equipment Remanufacturing Technology, Academy of Army Armored Forces, Beijing 100072, China 
ZHENG Bo-yuan 2.Key Laboratory of National Defense Science and Technology for Equipment Remanufacturing Technology, Academy of Army Armored Forces, Beijing 100072, China; 3.School of Engineering and Technology, China University of Geosciences (Beijing), Beijing 100084, China 
摘要点击次数:
全文下载次数:
中文摘要:
      目的 构筑具有疏水性能的3Cr13不锈钢微纳结构表面,并分析表面微纳结构与疏水性能之间的关系。方法 试验设计了喷砂与化学刻蚀结合的两步构筑方法,通过对喷砂与刻蚀工艺的不同参数优化,制备了具有疏水性能的3Cr13不锈钢微纳表面。从表面形貌参数推测了亲水与疏水试样表面微结构的差异,并从微结构面积分布的不同对推测进行了证明。结果 经过处理后,不锈钢基体表面呈现由微米孔洞与纳米颗粒组成的微-纳双重结构分布,喷砂与刻蚀参数会影响基体表面微纳结构粗糙度因子,同时表面微孔洞的尺度、分布会影响疏水性能。疏水试样表面200~1000 μm2孔洞占孔洞总面积的比值大于39%,而1000 μm2以上孔洞占孔洞总面积的比值小于30%,即疏水试样表面微结构更多的是由密集的小面积孔洞组成。结论 通过喷砂与化学刻蚀的方法可使3Cr13不锈钢表面产生具有疏水性能的微-纳双重结构,且疏水性能与微结构面积密切相关,当1000 μm2以上孔洞面积小于30%时,试样呈疏水性。
英文摘要:
      Stainless steel is a widely used engineering material and improving its hydrophobic property can provide self-cleaning property and reduce corrosion. Parameters such as the size and quantity of surface morphology have an important influence on the contact angle. The work aims to construct the micro-nano structure of 3Cr13 stainless steel with hydrophobic property to analyze the relationship between the mcro-nano structure and hydrophobic property. Besides, a two-step method combining sandblasting and chemical etching was designed. The micro-nano surface of 3Cr13 stainless steel with hydrophobic property was prepared by optimizing different parameters of sand blasting and chemical etching processes. The difference between the surface microstructure of hydrophilic and hydrophobic samples was inferred from the surface morphology parameters, and the prediction was proved from the different area distribution of the microstructure. The surface of stainless steel substrate was distributed by micro-nano structures composed of micro-pores and nano-particles. Sandblasting and etching parameters affected the roughness factors on the micro-nano structure of the substrate. The size and distribution of the surface micro-pores affected the hydrophobic property. The ratio of 200~1000 μm2 pores to the total pores area on the surface of hydrophobic samples was more than 39%, while the ratio of the pores larger than 1000 μm2 to the total pores area was less than 30%. That was to say, the surface micro-structures of hydrophobic samples were mostly composed of dense small pores. By sandblasting and chemical etching, the surface of 3Cr13 stainless steel can produce micro-nano double structure with hydrophobic property, and the hydrophobic property is closely related to the area of microstructure. When the area of pore above 1000 μm2 is less than 30%, the sample is hydrophobic.
查看全文  查看/发表评论  下载PDF阅读器
关闭

关于我们 | 联系我们 | 投诉建议 | 隐私保护 | 用户协议

您是第19835781位访问者    渝ICP备15012534号-3

版权所有:《表面技术》编辑部 2014 surface-techj.com, All Rights Reserved

邮编:400039 电话:023-68792193传真:023-68792396 Email: bmjs@surface-techj.com

渝公网安备 50010702501715号