任亚东,翟晓凡,刘欣,管方,鞠鹏,王楠,段继周,侯保荣.纳米硫化铋-锌复合镀膜的制备及其抗菌性能研究[J].表面技术,2020,49(6):114-123.
REN Ya-dong,ZHAI Xiao-fan,LIU Xin,GUAN Fang,JU Peng,WANG Nan,DUAN Ji-zhou,HOU Bao-rong.Electrodeposition and Antibacterial Properties of Bismuth Sulfide Nanoparticles-Zinc Composite Coatings[J].Surface Technology,2020,49(6):114-123
纳米硫化铋-锌复合镀膜的制备及其抗菌性能研究
Electrodeposition and Antibacterial Properties of Bismuth Sulfide Nanoparticles-Zinc Composite Coatings
投稿时间:2019-08-26  修订日期:2020-06-20
DOI:10.16490/j.cnki.issn.1001-3660.2020.06.013
中文关键词:  纳米硫化铋  复合锌基镀膜  恒电流电沉积  光催化抗菌性能
英文关键词:bismuth sulfide nanoparticles  zinc-based composite coating  galvanostatic electrodeposition  photo-catalyzed antibacterial properties
基金项目:国家自然科学基金青年项目(41706080);山东省重点研发计划(2018GHY115029, 2018GHY115003);中国科学院战略性先导科技专项(XDA13040403)
作者单位
任亚东 1.青岛科技大学,山东 青岛 266042;2.中国科学院海洋研究所 海洋环境腐蚀与生物污损重点实验室,山东 青岛 266071;3.青岛海洋科学与技术试点国家实验室 海洋腐蚀与防护开放工作室,山东 青岛 266237 
翟晓凡 2.中国科学院海洋研究所 海洋环境腐蚀与生物污损重点实验室,山东 青岛 266071;3.青岛海洋科学与技术试点国家实验室 海洋腐蚀与防护开放工作室,山东 青岛 266237 
刘欣 1.青岛科技大学,山东 青岛 266042 
管方 2.中国科学院海洋研究所 海洋环境腐蚀与生物污损重点实验室,山东 青岛 266071;3.青岛海洋科学与技术试点国家实验室 海洋腐蚀与防护开放工作室,山东 青岛 266237 
鞠鹏 4.自然资源部第一海洋研究所,山东 青岛 266061 
王楠 2.中国科学院海洋研究所 海洋环境腐蚀与生物污损重点实验室,山东 青岛 266071;3.青岛海洋科学与技术试点国家实验室 海洋腐蚀与防护开放工作室,山东 青岛 266237 
段继周 2.中国科学院海洋研究所 海洋环境腐蚀与生物污损重点实验室,山东 青岛 266071;3.青岛海洋科学与技术试点国家实验室 海洋腐蚀与防护开放工作室,山东 青岛 266237 
侯保荣 2.中国科学院海洋研究所 海洋环境腐蚀与生物污损重点实验室,山东 青岛 266071;3.青岛海洋科学与技术试点国家实验室 海洋腐蚀与防护开放工作室,山东 青岛 266237 
AuthorInstitution
REN Ya-dong 1.Qingdao University of Science and Technology, Qingdao 266042, China; 2.Key laboratory of Marine Environment Corrosion and Biological Fouling, Institute of Oceanography, Chinese Academy of Sciences, Qingdao 266071, China; 3.Open Studio for Marine Corrosion and Protection, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China 
ZHAI Xiao-fan 2.Key laboratory of Marine Environment Corrosion and Biological Fouling, Institute of Oceanography, Chinese Academy of Sciences, Qingdao 266071, China; 3.Open Studio for Marine Corrosion and Protection, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China 
LIU Xin 1.Qingdao University of Science and Technology, Qingdao 266042, China 
GUAN Fang 2.Key laboratory of Marine Environment Corrosion and Biological Fouling, Institute of Oceanography, Chinese Academy of Sciences, Qingdao 266071, China; 3.Open Studio for Marine Corrosion and Protection, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China 
JU Peng 4.The First Institute of Oceanography, MNR, Qingdao 266061, China 
WANG Nan 2.Key laboratory of Marine Environment Corrosion and Biological Fouling, Institute of Oceanography, Chinese Academy of Sciences, Qingdao 266071, China; 3.Open Studio for Marine Corrosion and Protection, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China 
DUAN Ji-zhou 2.Key laboratory of Marine Environment Corrosion and Biological Fouling, Institute of Oceanography, Chinese Academy of Sciences, Qingdao 266071, China; 3.Open Studio for Marine Corrosion and Protection, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China 
HOU Bao-rong 2.Key laboratory of Marine Environment Corrosion and Biological Fouling, Institute of Oceanography, Chinese Academy of Sciences, Qingdao 266071, China; 3.Open Studio for Marine Corrosion and Protection, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China 
摘要点击次数:
全文下载次数:
中文摘要:
      目的 将锌镀层与具有光催化抗菌性能的纳米粒子复合,实现对锌镀层的改性,成功制备一种具有光催化抗菌性能的功能性复合镀层。方法 通过向弱酸性硫酸盐锌镀液中加入梯度浓度具有可见光催化杀菌性能的硫化铋纳米粒子,在20#碳钢表面利用恒电流法一步成功制备了系列硫化铋-锌复合镀膜。利用电化学工作站监测了沉积过程中的沉积电位,分别记录沉积前和沉积后的样品质量并测量沉积面积,通过计算,确定了沉积过程的电流效率。通过扫描电子显微镜(SEM)、X-射线晶体衍射仪(XRD)及电子能谱仪(EDS)对镀层进行了形貌及成分分析,采用大肠杆菌作为代表性的细菌,检测了复合镀膜的抗菌性能。结果 与纯锌镀膜相比,硫化铋的加入显著促进了(100)晶相的晶体生长,而抑制了(102)晶相的晶体生长,使镀膜形貌由标准六方晶系变为块状晶体;硫化铋的加入使沉积电位变得更正,且随硫化铋添加量的增加,变正增幅变大;硫化铋的加入使电沉积过程的电流效率与纯锌镀膜的电流效率相比增大了5%左右,但硫化铋的添加量对电流效率的影响不大;硫化铋-锌复合镀膜在可见光下对大肠杆菌具有良好的抗杀性能,且硫化铋的复合量越高,抗菌效果越好。结论 通过笔者提出的电沉积方法,硫化铋可成功复合到了锌镀膜中,从而使硫化铋-锌复合镀膜获得了良好的抗菌性能,最终发现当镀液中硫化铋质量浓度为2 g/L时,硫化铋在锌镀层中的复合量最高,抗菌性能最好。
英文摘要:
      The work aims to compound zinc coating with antibacterial nanoparticles to modify the zinc coating and prepare a functional composite coating with photocatalytic antibacterial properties. Bismuth sulfide nanoparticles were prepared by hydrothermal method, which possess high. By adding gradient concentration of bismuth sulfide nanoparticles with antibacterial properties excited by visible light into the zinc sulfate electrolyte, a series of bismuth sulfide-zinc composite coatings were successfully prepared on 20# carbon steel surface through galvanostatic electrodeposition. The deposition potential during the deposition process was monitored by electrochemical workstation. By recording the mass and depositing area before and after deposition, the current efficiency was calculated. The morphology and composition of the coatings were analyzed by SEM, XRD and EDS. Furthermore, E.coli was used as the representative bacteria to evaluate the antibacterial properties of composite coatings. Compared with the pure zinc coating, the addition of bismuth sulfide significantly promoted the crystal growth of the (100) orientation, while suppressing the (102) orientations. The coating morphology altered from the standard hexagonal system to the bulk crystal. With the addition of bismuth sulfide, the potential of the electrodeposition process shifted positively and increased with the increase of bismuth sulfide amount. The addition of bismuth sulfide increased the current efficiency of the electrodeposition process by 5% compared with the current efficiency of pure zinc coating. However, the amount of bismuth sulfide did not influence the current efficiency obviously. Moreover, the bismuth sulfide-zinc composite coating had good bactericidal property against E.coli under visible light, and the more the composite amount of bismuth sulfide was, the better the antibacterial rate was. Bismuth sulfide nanoparticles can be successfully composited into the zinc coatings by the proposed electrodeposition method, thus the bismuth sulfide-zinc composite coating obtains antibacterial properties. When the concentration of bismuth sulfide in the electrolyte is 2 g/L, the composite amount in the coatings is the highest, leading to the most effective antibacterial property.
查看全文  查看/发表评论  下载PDF阅读器
关闭

关于我们 | 联系我们 | 投诉建议 | 隐私保护 | 用户协议

您是第19508490位访问者    渝ICP备15012534号-3

版权所有:《表面技术》编辑部 2014 surface-techj.com, All Rights Reserved

邮编:400039 电话:023-68792193传真:023-68792396 Email: bmjs@surface-techj.com

渝公网安备 50010702501715号