赵文波,赵博深,李广州,师红旗,丁毅.表面充氢对TA2在草酸溶液中腐蚀行为的影响[J].表面技术,2020,49(4):339-346.
ZHAO Wen-bo,ZHAO Bo-shen,LI Guang-zhou,SHI Hong-qi,DING Yi.Corrosion Behaviors of TA2 in Oxalic Acid Solution after Surface Hydrogen Charging[J].Surface Technology,2020,49(4):339-346
表面充氢对TA2在草酸溶液中腐蚀行为的影响
Corrosion Behaviors of TA2 in Oxalic Acid Solution after Surface Hydrogen Charging
投稿时间:2019-04-18  修订日期:2020-04-20
DOI:10.16490/j.cnki.issn.1001-3660.2020.04.040
中文关键词:  工业纯钛  电化学充氢  氢化钛  耐蚀性  草酸  腐蚀行为
英文关键词:industrial pure titanium  electrochemical hydrogen charging  titanium hydride  corrosion resistance  oxalic acid  corrosion behaviors
基金项目:
作者单位
赵文波 南京工业大学 材料科学与工程学院,南京 211816 
赵博深 南京工业大学 材料科学与工程学院,南京 211816 
李广州 南京工业大学 材料科学与工程学院,南京 211816 
师红旗 南京工业大学 材料科学与工程学院,南京 211816 
丁毅 南京工业大学 材料科学与工程学院,南京 211816 
AuthorInstitution
ZHAO Wen-bo School of Materials Science and Engineering, Nanjing Tech University, Nanjing 211816, China 
ZHAO Bo-shen School of Materials Science and Engineering, Nanjing Tech University, Nanjing 211816, China 
LI Guang-zhou School of Materials Science and Engineering, Nanjing Tech University, Nanjing 211816, China 
SHI Hong-qi School of Materials Science and Engineering, Nanjing Tech University, Nanjing 211816, China 
DING Yi School of Materials Science and Engineering, Nanjing Tech University, Nanjing 211816, China 
摘要点击次数:
全文下载次数:
中文摘要:
      目的 提高TA2在草酸溶液中的耐蚀性,揭示表面充氢提高钛在草酸溶液中耐腐蚀性能的机理。 方法 采用电化学充氢的方法对TA2试样进行表面充氢,采用SEM和XRD分析充氢对试样表面形貌和相组成的影响,并采用电化学测试和腐蚀浸泡实验研究不同充氢时间的TA2试样在草酸溶液中的耐蚀性。结果 电化学充氢后,TA2试样表面会生成一层以TiH1.5为主要组成相的氢化钛层,该氢化钛层的厚度随充氢时间的延长而增厚。电化学测试结果显示,随着充氢时间的延长,TA2试样在草酸溶液中的自腐蚀电位从–0.7 V(vs. SCE)逐渐增加到0 V左右,腐蚀倾向显著下降;极化电阻Rp则从0.2 kΩ•cm2逐渐增加到了24.1 kΩ•cm2,耐蚀性能增强。腐蚀浸泡实验结果表明,随着充氢时间的延长,TA2试样在草酸溶液中的腐蚀程度逐渐减弱,腐蚀速率也从未充氢时的4.63 mm/a逐渐下降到0.03 mm/a。结论 在草酸溶液中,电化学充氢TA2试样表面生成的氢化钛层对Ti基体具有保护作用,并且保护效果随氢化钛层的增厚而增强。试样表面氢化钛层对Ti基体的保护作用除了与成分有关外,还与其结构相关,完整致密的氢化钛层可以对Ti基体起到很好的保护作用,而疏松多孔的氢化钛不仅不能保护Ti基体,反而还会促进Ti基体的腐蚀。
英文摘要:
      The work aims to improve the corrosion resistance of TA2 in oxalic acid solution, reveal the mechanism of hydrogen charging to improve the corrosion resistance of titanium in oxalic acid solution. The surface of TA2 was hydrogenated by hydrogen charging. The effects of hydrogen charging on the surface morphology and phase composition of the sample were analyzed by SEM and XRD. Electrochemical tests and corrosion immersion experiments were carried out to study the corrosion resistance of TA2 samples with different hydrogen charging times in oxalic acid solution. After hydrogen charging, a layer of titanium hydride with TiH1.5 as the main component was formed on the surface of the TA2 sample. The thickness of the titanium hydride layer was thickened with the extension of hydrogen charging time. Electrochemical test results showed that with the extension of hydrogen charging time, the self-corrosion potential of TA2 sample in oxalic acid solution gradually increased from –0.7 V (vs. SCE) to about 0 V, and the corrosion tendency decreased remarkably; the polarization resistance Rp gradually increased from 0.2 kΩ•cm2 to 24.1 kΩ•cm2, and corrosion resistance was enhanced. The results of corrosion immersion experiments showed that the corrosion degree of TA2 sample in oxalic acid solution gradually decreased with the extension of hydrogen charging time, and the corrosion rate also gradually decreased from 4.63 mm/a to 0.03 mm/a. In the oxalic acid solution, the titanium hydride layer formed on the surface of the TA2 sample after hydrogen charging has protective effect on the titanium substrate, and the protective effect is enhanced with the thickening of the titanium hydride layer. The protective effect of titanium hydride layer of sample surface on titanium substrate on is related to its structure in addition to its composition: the complete and dense titanium hydride layer can protect the titanium substrate well; while the loose porous titanium hydride not only cannot protect it, but also promotes the corrosion of titanium substrate.
查看全文  查看/发表评论  下载PDF阅读器
关闭

关于我们 | 联系我们 | 投诉建议 | 隐私保护 | 用户协议

您是第19948214位访问者    渝ICP备15012534号-3

版权所有:《表面技术》编辑部 2014 surface-techj.com, All Rights Reserved

邮编:400039 电话:023-68792193传真:023-68792396 Email: bmjs@surface-techj.com

渝公网安备 50010702501715号