吴玉厚,王浩,孙健,王贺,李颂华.氮化硅陶瓷磨削表面质量的建模与预测[J].表面技术,2020,49(3):281-289.
WU Yu-hou,WANG Hao,SUN Jian,WANG He,LI Song-hua.Modeling and Prediction of Surface Quality of Silicon Nitride Ceramic Grinding[J].Surface Technology,2020,49(3):281-289
氮化硅陶瓷磨削表面质量的建模与预测
Modeling and Prediction of Surface Quality of Silicon Nitride Ceramic Grinding
投稿时间:2019-08-26  修订日期:2020-03-20
DOI:10.16490/j.cnki.issn.1001-3660.2020.03.036
中文关键词:  陶瓷磨削  表面粗糙度  去除方式  未变形切屑厚度  临界切深  建模与预测
英文关键词:ceramic grinding  surface roughness  removal method  undeformed chip thickness  critical depth  modeling and prediction
基金项目:国家自然科学基金(51675353,51975388);沈阳市“双百工程”计划(Z18-5-023);辽宁省百千万人才工程资助计划(2018921009);沈阳市中青年科技创新人才支持计划(SYSCXRC2017005);辽宁省自然科学基金(2019-ZD-0666,2019-MS-266)
作者单位
吴玉厚 沈阳建筑大学 a.高档石材数控加工装备与技术国家地方联合工程实验室 b.机械工程学院,沈阳 110168 
王浩 沈阳建筑大学 b.机械工程学院,沈阳 110168 
孙健 沈阳建筑大学 b.机械工程学院,沈阳 110168 
王贺 沈阳建筑大学 a.高档石材数控加工装备与技术国家地方联合工程实验室 b.机械工程学院,沈阳 110168 
李颂华 沈阳建筑大学 a.高档石材数控加工装备与技术国家地方联合工程实验室 b.机械工程学院,沈阳 110168 
AuthorInstitution
WU Yu-hou a.National-Local Joint Engineering Laboratory of NC Machining Equipment and Technology of High-Grade Stone, b.School of Mechanical Engineering, Shenyang Jianzhu University, Shenyang 110168, China 
WANG Hao b.School of Mechanical Engineering, Shenyang Jianzhu University, Shenyang 110168, China 
SUN Jian b.School of Mechanical Engineering, Shenyang Jianzhu University, Shenyang 110168, China 
WANG He a.National-Local Joint Engineering Laboratory of NC Machining Equipment and Technology of High-Grade Stone, b.School of Mechanical Engineering, Shenyang Jianzhu University, Shenyang 110168, China 
LI Song-hua a.National-Local Joint Engineering Laboratory of NC Machining Equipment and Technology of High-Grade Stone, b.School of Mechanical Engineering, Shenyang Jianzhu University, Shenyang 110168, China 
摘要点击次数:
全文下载次数:
中文摘要:
      目的 提升氮化硅陶瓷加工质量和效率,提高粗糙度模型预测精度。方法 提出塑性与塑-脆性去除转变临界切深hc1和塑-脆性与脆性转变临界切深hc2,然后对原有模型进行修正,并引入塑性去除粗糙度修正系数φ1、τ1和塑-脆性去除粗糙度修正系数φ2、τ2,建立基于不同去除方式的粗糙度Ra预测模型,后通过磨削实验对系数进行求解,并得出磨削参数对粗糙度和表面形貌的影响。结果 塑性去除粗糙度修正系数φ1=5.872×10–6、τ1=0.1094,塑-脆性去除粗糙度修正系数φ2=1.299×10–5、τ2=0.1582。砂轮线速度vs由30 m/s增大到50 m/s,粗糙度Ra由0.366 μm减小到0.266 μm,去除方式由脆性断裂向塑性变形转变,表面质量变好。磨削深度ap由5 μm增大到45 μm,粗糙度Ra由0.252 μm增大到0.345 μm,去除方式由塑性变形向脆性断裂转变,表面质量变差。工件进给速度vw由1000 mm/min增大到9000 mm/min,粗糙度Ra由0.227 μm增大到0.572 μm,去除方式由塑性变形向脆性断裂转变,表面质量变差。模型预测值与实验值的相对误差δ在2.1%~8%之间。结论 在加工中应控制磨削深度和工件进给速度,适当提高砂轮线速度,以保证加工精度和效率。基于不同去除方式的粗糙度预测模型,可较为精准地预测实际加工情况。
英文摘要:
      The work aims to improve the processing quality and efficiency of silicon nitride ceramics, the prediction accuracy of the roughness model. The critical depth of plastic and plastic-brittle removal transition hc1, critical depth of plastic-brittle and brittle removal transition hc2 were proposed. Secondly, the original model was modified. The roughness correction coefficients of the plastic removal φ1 and τ1, the roughness correction coefficients of the plastic-brittle removal φ2 and τ2 were introduced. A roughness prediction model based on different removal methods was established. Finally, the coefficients were solved by grinding experiments. The effect of grinding parameters on roughness and surface topography were obtained. The results show that the roughness correction coefficients of the plastic removal φ1 =5.872×10–6, τ1=0.1094. The roughness correction coefficients of the plastic-brittle removal φ2 =1.299×10–5, τ2=0.1582. When the grinding wheel speed vs increases from 30 m/s to 50 m/s, the roughness Ra decreases from 0.366 μm to 0.266 μm. The removal method changes from brittle fracture to plastic deformation. And the surface quality becomes better. When grinding depth ap increases from 5 μm to 45 μm, the roughness Ra increases from 0.252 μm to 0.345 μm. The removal method changes from plastic deformation to brittle fracture. And the surface quality deteriorates. When workpiece feed rate vw increases from 1000 mm/min to 9000 mm/min, the roughness Ra increases from 0.227 μm to 0.572 μm. The removal method changes from plastic deformation to brittle fracture. And the surface quality deteriorates. The relative error between the model predictive value and the experimental value δ is 2.1%~8%. The conclusion is that the grinding depth and the workpiece feed speed should be controlled during the machining. And the grinding wheel speed should be properly increased to ensure the machining accuracy and efficiency. The roughness prediction model based on different removal methods can accurately predict actual machining conditions.
查看全文  查看/发表评论  下载PDF阅读器
关闭

关于我们 | 联系我们 | 投诉建议 | 隐私保护 | 用户协议

您是第19514212位访问者    渝ICP备15012534号-3

版权所有:《表面技术》编辑部 2014 surface-techj.com, All Rights Reserved

邮编:400039 电话:023-68792193传真:023-68792396 Email: bmjs@surface-techj.com

渝公网安备 50010702501715号