王崇鑫,刘利国,周雯,刘玥,孙达云,路宽.影响硅橡胶涂层疏水性的因素[J].表面技术,2020,49(3):119-123.
WANG Chong-xin,LIU Li-guo,ZHOU Wen,LIU Yue,SUN Da-yun,LU Kuan.Factors Affecting the Hydrophobicity of Silicone Rubber Coatings[J].Surface Technology,2020,49(3):119-123
影响硅橡胶涂层疏水性的因素
Factors Affecting the Hydrophobicity of Silicone Rubber Coatings
投稿时间:2019-04-02  修订日期:2020-03-20
DOI:10.16490/j.cnki.issn.1001-3660.2020.03.015
中文关键词:  硅橡胶  纳米粉末  超疏水  涂层  微观结构  无量纲常数
英文关键词:silicone rubber  nano-powder  super-hydrophobic  coating  microstructure  dimensionless constant
基金项目:
作者单位
王崇鑫 江南大学 机械学院,江苏 无锡 214122 
刘利国 江南大学 机械学院,江苏 无锡 214122 
周雯 江南大学 机械学院,江苏 无锡 214122 
刘玥 江南大学 机械学院,江苏 无锡 214122 
孙达云 江南大学 机械学院,江苏 无锡 214122 
路宽 江南大学 机械学院,江苏 无锡 214122 
AuthorInstitution
WANG Chong-xin School of Mechanical Engineering, Jiangnan University, Wuxi 214122, China 
LIU Li-guo School of Mechanical Engineering, Jiangnan University, Wuxi 214122, China 
ZHOU Wen School of Mechanical Engineering, Jiangnan University, Wuxi 214122, China 
LIU Yue School of Mechanical Engineering, Jiangnan University, Wuxi 214122, China 
SUN Da-yun School of Mechanical Engineering, Jiangnan University, Wuxi 214122, China 
LU Kuan School of Mechanical Engineering, Jiangnan University, Wuxi 214122, China 
摘要点击次数:
全文下载次数:
中文摘要:
      目的 寻找影响硅橡胶涂层疏水性的因素,并找到相应的提升改进方法。方法 以液体硅橡胶为基体,通过燃烧橡胶条熏附、添加纳米SiO2粉末混合和喷洒纳米SiO2粉末附着这三种不同方式,来制备超疏水表面涂层。通过改变纳米粉末的加入方式、加入质量,研究疏水性的最佳条件。并通过光学显微镜测量静态接触角评价表面疏水性能,寻找影响其疏水性的因素。结果 最佳的方法为熏烧的烟尘附于液体硅橡胶涂层表面,大多数试验样本出现超疏水特性,静态接触角最高可达159°,平均值150°,静态接触角提高40°以上;次之为均匀喷洒纳米SiO2粉末,部分试验样本出现超疏水特性,静态接触角最高为145°,平均值135.5°,静态接触角提高30°~40°;简单搅拌混合的提升效果最差,没有试验样本出现超疏水特性,静态接触角最高可达124°,平均值108.5°,静态接触角只提高5°~15°。结论 构建超疏水涂层的关键在于能否成功构建出微纳米的二级微观结构,简单的物理混合、搅拌会使纳米粉末被覆盖掉,无法表现出其特性。涂层的疏水能力与接触周围的实际微观长度有关。
英文摘要:
      The work aims to study the factors affecting the hydrophobicity of silicone rubber coatings and find out the corresponding improvement method. With liquid silicone rubber as the matrix, the superhydrophobic surface coatings were prepared in three different ways of burning rubber strips, adding nano-SiO2 powder, and spraying nano-SiO2 powder. The optimum conditions for hydrophobicity were studied by changing the way in which the nano-powder was added and the quality of the addition. The surface hydrophobic properties were evaluated by measuring the static contact angle with optical microscopy, and the factors affecting the hydrophobicity were obtained. The best method was that the burning smoke was attached to the surface of the liquid silicone rubber coating. Most of the test samples had super-hydrophobic properties. The static contact angle was up to 159°, the average value was 150°, and the static contact angle was increased by 40°. The second was the nano-SiO2 powder sprayed evenly. Some test samples showed super-hydrophobic properties. The static contact angle was up to 145°, the average value was 135.5°, and the static contact angle was increased by 30° to 40°. The effect of simple agitation and mixing was the worst. There was no super-hydrophobic property in the test sample. The static contact angle was up to 124°, the average value was 108.5°, and the static contact angle was only increased by 5° to 15°. The key to constructing a super-hydrophobic coating is whether the secondary microstructure of micro-nano can be successfully constructed. Simple physical mixing and stirring will cause the nano-powder to be covered and fail to exhibit the characteristics. The hydrophobic ability of the coating is related to the actual microscopic length around the contact.
查看全文  查看/发表评论  下载PDF阅读器
关闭

关于我们 | 联系我们 | 投诉建议 | 隐私保护 | 用户协议

您是第19509912位访问者    渝ICP备15012534号-3

版权所有:《表面技术》编辑部 2014 surface-techj.com, All Rights Reserved

邮编:400039 电话:023-68792193传真:023-68792396 Email: bmjs@surface-techj.com

渝公网安备 50010702501715号