张而耕,牛帅,陈强,潘文高,李朝阳.Cu掺杂类金刚石薄膜应力降低机制的第一性原理研究[J].表面技术,2020,49(2):295-300.
ZHANG Er-geng,NIU Shuai,CHEN Qiang,PAN Wen-gao,LI Chao-yang.First-principles on Stress Reduction Mechanism of Copper Doped Diamond-like Carbon Films[J].Surface Technology,2020,49(2):295-300
Cu掺杂类金刚石薄膜应力降低机制的第一性原理研究
First-principles on Stress Reduction Mechanism of Copper Doped Diamond-like Carbon Films
投稿时间:2019-06-17  修订日期:2020-02-20
DOI:10.16490/j.cnki.issn.1001-3660.2020.02.037
中文关键词:  Cu-DLC  第一性原理  应力降低  径向分布函数  残余应力  键长  键角
英文关键词:Cu-DLC  first principle  stress reduction  radial distribution function  residual stress  bond length  bond angle
基金项目:上海市科委重点支撑计划(17090503800)
作者单位
张而耕 1.上海应用技术大学 上海物理气相沉积(PVD)超硬涂层及装备工程技术研究中心,上海 201418 
牛帅 1.上海应用技术大学 上海物理气相沉积(PVD)超硬涂层及装备工程技术研究中心,上海 201418 
陈强 1.上海应用技术大学 上海物理气相沉积(PVD)超硬涂层及装备工程技术研究中心,上海 201418 
潘文高 2.上海离原环境科技有限公司,上海200241 
李朝阳 2.上海离原环境科技有限公司,上海200241 
AuthorInstitution
ZHANG Er-geng 1.Shanghai Engineering Research Center of Physical Vapor Deposition (PVD) Superhard Coating and Equipment, Shanghai Institute of Technology, Shanghai 201418, China 
NIU Shuai 1.Shanghai Engineering Research Center of Physical Vapor Deposition (PVD) Superhard Coating and Equipment, Shanghai Institute of Technology, Shanghai 201418, China 
CHEN Qiang 1.Shanghai Engineering Research Center of Physical Vapor Deposition (PVD) Superhard Coating and Equipment, Shanghai Institute of Technology, Shanghai 201418, China 
PAN Wen-gao 2.Shanghai Liyuan Environmental Technology Limited Company, Shanghai 200241, China 
LI Chao-yang 2.Shanghai Liyuan Environmental Technology Limited Company, Shanghai 200241, China 
摘要点击次数:
全文下载次数:
中文摘要:
      目的 比较不同浓度Cu掺杂类金刚石薄膜的性能变化规律,并分析Cu掺杂对薄膜性能变化的作用机制。方法 建立密度为2.03 g/cm3、2.87 g/cm3的不同Cu原子数分数(1.56%~7.81%)掺杂类金刚石薄膜(Cu-DLC)初始模型,采用NVT和NOSE温度调节法模拟熔融退火及淬火过程,以及基于广义梯度近似(GGA)的共轭梯度法优化几何模型,运用CASTEP计算Cu-DLC模型的径向分布函数(RDF)、sp3-C含量、体积模量、键长和键角分布等,并探讨Cu掺杂对DLC膜应力变化的影响机制。结果 随Cu含量的增加,薄膜中sp3-C杂化比例增加。与DLC相比,Cu掺杂DLC的RDF中第一峰和第二峰的位置发生显著偏移,薄膜中残余应力随着Cu含量的增加先减小后增大,Cu含量为1.56%时,残余应力最小(7.2 GPa)。Cu含量增加导致总键角分布的峰值降低,峰宽向小键角移动,总键长分布峰值降低,在长键长方向产生小而宽的峰。结论 C—Cu的弱键特性及扭曲的键角、键长得到松弛,对薄膜残余压应力的降低有显著作用,在较高Cu浓度条件下,扭曲的C—C键比例增加,形成了更多扭曲的C—Cu和Cu—Cu结构是导致残余应力增加的关键因素。
英文摘要:
      The work aims to compare the evolution laws in the properties of diamond-like carbon films doped with different concentrations of copper and analyze the mechanism of the effects of copper doping on the properties of diamond-like carbon films. The initial models of copper-DLC doped with different concentrations of copper (1.56at.%~7.81at.%) and densities of 2.03 g/cm3 and 2.87 g/cm3 were established. The melting annealing and quenching processes were simulated by NVT and NOSE temperature regulation methods, and the geometric model was optimized by conjugate gradient method based on generalized gradient approximation (GGA). The radial distribution functions (RDF), sp3-C content, bulk modulus, bond length and bond angle distribution of the copper-DLC model were calculated by CASTEP and the effects of Cu doping on the stress change of DLC films were also discussed. The proportion of sp3-C hybridization increased with the increase of Cu content. Compared with DLC, the location of the first and second peaks in RDF of Cu-doped DLC shifted significantly. The residual stress in the films decreased first and then increased with the increase of the content of Cu. The residual stress was the smallest when the content of Cu was 1.56at.%(7.2 GPa). With the increase of Cu content, the peak value of the total bond angle distribution decreased, the peak width moved to the small bond angle, and the peak value of the total bond length distribution decreased, resulting in a small and wide peak in the long bond length direction. The weak bond properties of C—Cu and the relaxation of twisted bond angles and bond lengths have significant effects on the reduction of residual compressive stress. At higher concentration of Cu, the proportion of twisted C—C bonds increases, and more twisted C—Cu and Cu—Cu structures are formed, which is the key factor leading to the increase of residual stress.
查看全文  查看/发表评论  下载PDF阅读器
关闭

关于我们 | 联系我们 | 投诉建议 | 隐私保护 | 用户协议

您是第20078692位访问者    渝ICP备15012534号-3

版权所有:《表面技术》编辑部 2014 surface-techj.com, All Rights Reserved

邮编:400039 电话:023-68792193传真:023-68792396 Email: bmjs@surface-techj.com

渝公网安备 50010702501715号