张银霞,韩程宇,杨鑫,王栋,刘治华.GCr15钢平面磨削力仿真分析与实验研究[J].表面技术,2019,48(10):342-348.
ZHANG Yin-xia,HAN Cheng-yu,YANG Xin,WANG Dong,LIU Zhi-hua.Simulation Analysis and Experimental Research on Surface Grinding Force of GCr15 Steel[J].Surface Technology,2019,48(10):342-348
GCr15钢平面磨削力仿真分析与实验研究
Simulation Analysis and Experimental Research on Surface Grinding Force of GCr15 Steel
投稿时间:2019-02-26  修订日期:2019-10-20
DOI:10.16490/j.cnki.issn.1001-3660.2019.10.042
中文关键词:  CBN砂轮建模  磨削仿真  磨削力  平面磨削  GCr15轴承钢
英文关键词:CBN grinding wheel modeling  grinding simulation  grinding force  plane grinding  GCr15 bearing steel
基金项目:国家自然科学基金重点项目(U1804254);国家留学基金委项目(201907045070);中国博士后科学基金项目(2015M580635)
作者单位
张银霞 郑州大学 抗疲劳制造技术河南省工程实验室,郑州 450001 
韩程宇 郑州大学 抗疲劳制造技术河南省工程实验室,郑州 450001 
杨鑫 郑州大学 抗疲劳制造技术河南省工程实验室,郑州 450001 
王栋 郑州大学 抗疲劳制造技术河南省工程实验室,郑州 450001 
刘治华 郑州大学 抗疲劳制造技术河南省工程实验室,郑州 450001 
AuthorInstitution
ZHANG Yin-xia Henan Key Engineering Laboratory of Anti-fatigue Manufacturing Technology, Zhengzhou University, Zhengzhou 450001, China 
HAN Cheng-yu Henan Key Engineering Laboratory of Anti-fatigue Manufacturing Technology, Zhengzhou University, Zhengzhou 450001, China 
YANG Xin Henan Key Engineering Laboratory of Anti-fatigue Manufacturing Technology, Zhengzhou University, Zhengzhou 450001, China 
WANG Dong Henan Key Engineering Laboratory of Anti-fatigue Manufacturing Technology, Zhengzhou University, Zhengzhou 450001, China 
LIU Zhi-hua Henan Key Engineering Laboratory of Anti-fatigue Manufacturing Technology, Zhengzhou University, Zhengzhou 450001, China 
摘要点击次数:
全文下载次数:
中文摘要:
      目的 对不同磨削工艺参数下的平面磨削力进行预测,对磨削机理进行研究,进而控制磨削加工质量。方法 考虑CBN砂轮表面磨粒形状的多样性、姿态的多样性和空间分布的随机性,建立CBN砂轮模型,对GCr15材料模型进行有限元砂轮磨削仿真。同时使用CBN砂轮,采用不同的工件进给速度对GCr15进行单因素平面磨削实验,使用三坐标测力仪测量不同磨削参数下的磨削力。结果 建立的仿真砂轮模型的表面形貌与真实砂轮接近,仿真砂轮上的磨粒出刃高度均服从正态分布,与实际砂轮一致。对比随机多面体磨粒模型和真实CBN磨粒照片,两者形貌相似。磨削力实验和仿真结果表明,工件进给速度由3 m/min增大到18 m/min时,磨削力逐渐增大,仿真所得法向磨削力最大误差远小于切向磨削力。结论 实验结果与仿真结果具有一致性,证明了砂轮磨削有限元仿真模型可用于磨削力预测。因为仿真中无法考虑实际砂轮尺寸和砂轮表面结合剂对磨削的影响,结果具有一定误差,仿真的准确性有待进一步提高。研究结果为使用有限元方法研究磨削机理和控制磨削加工质量提供了思路。
英文摘要:
      The work aims to predict surface grinding force under different grinding process parameters and investigate the grinding mechanism to control the grinding quality. By considering the diversity of abrasive grain shape on the surface of CBN grinding wheel, the diversity of form and the randomness of spatial distribution, the CBN grinding wheel model was established and the finite element grinding wheel grinding simulation of GCr15 material model was carried out. At the same time, the single-factor plane grinding experiment of GCr15 was carried out with different workpiece feed speeds by CBN grinding wheel, and the grinding force under different grinding parameters was measured with a three-coordinate force gauge. The surface shape of the simulated grinding wheel model was close to that of the real grinding wheel. The height of the abrasive blade on the simulated grinding wheel was subject to the normal distribution and consistent with the actual grinding wheel. The random polyhedral abrasive grain model and the real CBN abrasive grain photograph were similar in appearance. The grinding force experiment and simulation results showed that the grinding force increased gradually when the workpiece feed speed was increased from 3 m/min to 18 m/min. The maximum error of the normal grinding force obtained by the simulation was much smaller than the maximum error of the tangential grinding force. The experimental results are consistent with the simulation results, thus proving that the grinding finite element simulation model of grinding wheel can be used for grinding force prediction. However, because the actual grinding wheel size and the influence of the surface bond of the grinding wheel on the grinding cannot be considered in the simulation, the result has certain error, and the accuracy of the simulation needs to be further improved. The research results provide an idea for using the finite element method to study the grinding mechanism and control the quality of the grinding process.
查看全文  查看/发表评论  下载PDF阅读器
关闭

关于我们 | 联系我们 | 投诉建议 | 隐私保护 | 用户协议

您是第19515999位访问者    渝ICP备15012534号-3

版权所有:《表面技术》编辑部 2014 surface-techj.com, All Rights Reserved

邮编:400039 电话:023-68792193传真:023-68792396 Email: bmjs@surface-techj.com

渝公网安备 50010702501715号