徐仰涛,黄凯,朱珍旭.工业电解液中镍阴极沉积和阳极溶出过程的EQCM研究[J].表面技术,2019,48(9):293-299.
XU Yang-tao,HUANG Kai,ZHU Zhen-xu.EQCM of Nickel Cathode Deposition and Anode Dissolution in Industrial Electrolyte[J].Surface Technology,2019,48(9):293-299
工业电解液中镍阴极沉积和阳极溶出过程的EQCM研究
EQCM of Nickel Cathode Deposition and Anode Dissolution in Industrial Electrolyte
投稿时间:2019-02-20  修订日期:2019-09-20
DOI:10.16490/j.cnki.issn.1001-3660.2019.09.035
中文关键词:    电解液  电结晶  阴极沉积  阳极溶出  EQCM  镀镍  镍电解
英文关键词:nickel  electrolyte  electrical crystallization  cathodic deposition  anodic dissolution  EQCM  nickel plating  nickel electrolysis
基金项目:镍钴资源综合利用国家重点实验室资助
作者单位
徐仰涛 1.兰州理工大学 a.省部共建有色金属先进加工与再利用国家重点实验室 b.材料科学与工程学院,兰州 730050;2.镍钴资源综合利用国家重点实验室,甘肃 金昌 737100 
黄凯 1.兰州理工大学 a.省部共建有色金属先进加工与再利用国家重点实验室 b.材料科学与工程学院,兰州 730050;2.镍钴资源综合利用国家重点实验室,甘肃 金昌 737100 
朱珍旭 1.兰州理工大学 a.省部共建有色金属先进加工与再利用国家重点实验室 b.材料科学与工程学院,兰州 730050;2.镍钴资源综合利用国家重点实验室,甘肃 金昌 737100 
AuthorInstitution
XU Yang-tao 1.a. State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metal under the Province and the Ministry of Education, b. School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China; 2.State Key Laboratory of Nickel and Cobalt Resources Comprehensive Utilization, Jinchang 737100, China 
HUANG Kai 1.a. State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metal under the Province and the Ministry of Education, b. School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China; 2.State Key Laboratory of Nickel and Cobalt Resources Comprehensive Utilization, Jinchang 737100, China 
ZHU Zhen-xu 1.a. State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metal under the Province and the Ministry of Education, b. School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China; 2.State Key Laboratory of Nickel and Cobalt Resources Comprehensive Utilization, Jinchang 737100, China 
摘要点击次数:
全文下载次数:
中文摘要:
      目的 通过电极表面质量的变化对工业电解液中Ni阴极沉积和阳极溶出过程进行研究,同时考察温度对此过程的影响。方法 采用循环伏安法(CV)研究硫化镍可溶阳极/混酸体系的工业电解液中,镍在金电极表面的阴极沉积、阳极溶出过程以及温度对该过程的影响,并利用电化学石英晶体微天平(EQCM)技术对此过程中电极表面的频率响应进行实时监测,同时依据实验测定的M/n值对此过程中不同电位区间的电极过程进行研究。结果 电解液温度为30 ℃时,Ⅰ和Ⅱ沉积区的M/n值分别为30.8、29.3 g/mol,与之对应的Ⅲ-1和Ⅲ-2溶出区的M/n值分别为30.7、29.4 g/mol。改变实验温度后,20 ℃时循环伏安实验将无法正常进行,当电解液温度由20 ℃逐步升高至25、30、35 ℃时,归属于沉积峰的M/n值依次为30.3、30.9、26.3 g/mol。随着温度的升高,镍的起始沉积电位逐渐正移,阴极沉积过程进行完全时,随着温度的升高,沉积在电极表面的镍沉积层质量逐渐增加,阳极溶解完全后,残留在电极表面的镍沉积层质量逐渐减少。结论 工业电解液中与镍沉积电位相近的金属离子(Co2+、Cu2+)与Ni2+发生共同沉积,并且种类随着温度的升高趋于复杂化。适当提高电解液的温度不仅有利于CV曲线中“形核环”和“溶出峰”的出现,而且还有助于镍的沉积,但同时也会形成结构疏松且易于溶解的沉积层。在–1.4 V时,CV曲线电位扫描方向的转变,使得沉积层结构发生变化,导致溶出过程发生分区溶解,并且溶出过程的分区现象随着温度的升高而越发明显。
英文摘要:
      The work aims to study the cathode deposition and anode dissolution of Ni in industrial electrolyte through the change of electrode mass and investigate the effect of temperature on this process. Cyclic voltammetry (CV) was used to study the cathodic deposition and anodic dissolution process of nickel on gold electrodes in industrial electrolytes of nickel sulfide soluble anode/mixed acid system and the effect of temperature on this process. Electrochemical quartz crystal microbalance (EQCM) was applied to monitor the frequency on electrode surface during this process in real time. At the same time, the electrode process in different potential range was analyzed according to M/n determined by experiment. When the electrolyte temperature was 30 ℃, the M/n values of the I and II deposition zones were 30.8 and 29.3 g/mol, respectively, and the M/n values of the III-1 and III-2 dissolution zones were 30.7 and 29.4 g/mol, respectively. After the experiment temperature was changed to 20 ℃, cyclic voltammetry could not be conducted. When the temperature of the electrolyte was gradually increased from 25 ℃ to 30 ℃ and 35 ℃, the M/n values of the deposition peaks were 30.3, 30.9 and 26.3 g/mol, respectively, As the temperature increased, the initial deposition potential of nickel was positively shifted. During cathode deposition, the mass of nickel disposition layer on electrode surface gradually increased with the increasing temperature. After anode dissolution, the mass of nickel disposition layer on electrode surface gradually decreased. Metal ions (Co2+, Cu2+) close to the nickel ion in deposition potential will co-deposit with Ni2+, and types tend to be complicated with increasing temperature. Properly increasing the temperature of the electrolyte not only facilitates the deposition of nickel, but also promotes the appearance of nucleation rings and dissolution peaks in CV curves. Besides, the deposition with loose structure and soluble properties can be formed. The change in the direction of potential scanning in the CV curve results in the change in the structure of nickel deposit layer during the deposition process at –1.4 V, thus causing stratified dissolution in the dissolution process, and the stratified dissolution in the dissolution process becomes more obvious with the increase of temperature.
查看全文  查看/发表评论  下载PDF阅读器
关闭

关于我们 | 联系我们 | 投诉建议 | 隐私保护 | 用户协议

您是第19961161位访问者    渝ICP备15012534号-3

版权所有:《表面技术》编辑部 2014 surface-techj.com, All Rights Reserved

邮编:400039 电话:023-68792193传真:023-68792396 Email: bmjs@surface-techj.com

渝公网安备 50010702501715号