林长顺,顾逸乔,王婷婷,朱定一,王连登.固液界面反应润湿动力学的表征与计算[J].表面技术,2019,48(8):177-184.
LIN Chang-shun,GU Yi-qiao,WANG Ting-ting,ZHU Ding-yi,WANG Lian-deng.Characterization and Calculation of Dynamics of Reactive Wetting at Solid-Liquid Interface[J].Surface Technology,2019,48(8):177-184
固液界面反应润湿动力学的表征与计算
Characterization and Calculation of Dynamics of Reactive Wetting at Solid-Liquid Interface
投稿时间:2019-02-26  修订日期:2019-08-20
DOI:10.16490/j.cnki.issn.1001-3660.2019.08.024
中文关键词:  反应界面  固液界面能  动力学  润湿性  接触角  Young方程  NiSi合金
英文关键词:reaction interface  solid-liquid interface energy  dynamic  wettability  contact angle  Young equation  NiSi alloys
基金项目:
作者单位
林长顺 福州大学 a.材料科学与工程学院,福州 350108 
顾逸乔 福州大学 a.材料科学与工程学院,福州 350108 
王婷婷 福州大学 a.材料科学与工程学院,福州 350108 
朱定一 福州大学 a.材料科学与工程学院,福州 350108 
王连登 福州大学 b.机械工程与自动化学院,福州 350108 
AuthorInstitution
LIN Chang-shun a.School of Materials Science and Engineering, Fuzhou University, Fuzhou 350108, China 
GU Yi-qiao a.School of Materials Science and Engineering, Fuzhou University, Fuzhou 350108, China 
WANG Ting-ting a.School of Materials Science and Engineering, Fuzhou University, Fuzhou 350108, China 
ZHU Ding-yi a.School of Materials Science and Engineering, Fuzhou University, Fuzhou 350108, China 
WANG Lian-deng b.School of Mechanical Engineering and Automation, Fuzhou University, Fuzhou 350108, China 
摘要点击次数:
全文下载次数:
中文摘要:
      目的 获得在反应润湿过程中固液界面能与时间变化的关系,掌握反应润湿动力学的核心问题。 方法 基于反应润湿过程中反应界面处的三相能量处于动态平衡状态,以反应界面新相覆盖率a和界面活性元素占位浓度分数Fs为变量,结合Young方程带入边界条件进行数学推导,并且进一步采用Dezellus推出的cosθ-t关系的动力学方程进行理论推导。通过真空熔炼炉炼制NiSi合金,采用改良座滴法,在高温真空润湿仪中的石墨基板上进行润湿实验,用高分辨率的CCD相机拍摄反应润湿过程中接触角的变化,获取接触角数据,结合公式计算,验证动力学方程。结果 理论推导出了固液界面能与时间关系的动力学方程。该方程与文献中将固液界面能在反应过程的瞬时差值作为驱动力所推方程相同,也与Dezellus推出的cosθ-t关系经推导后的动力学方程完全相同。该动力学方程中固液界面能与时间呈指数规律降低的关系。Ni-Si/C体系润湿实验的结果表明,在界面反应控制阶段,固液界面能随反应时间呈指数规律降低,与理论推导的动力学方程中固液界面能随反应时间的变化规律一致,结合动力学方程与Arrhenius方程计算出Ni-45%Si/C体系的界面反应激活能为239 kJ/mol,与文献中所报道的数值接近。结论 反应润湿过程中,该反应动力学方程切实可靠,固液界面能随时间呈指数规律降低的关系,能够为材料表面改性与涂层中的润湿性问题提供理论参考。
英文摘要:
      The work aims to obtain the relationship of solid-liquid interface energy changing over time during the reaction wetting process and master the core problem of reaction wetting kinetics. Theory derivation: during reaction wetting process, three-phase energy was in dynamic equilibrium at reaction interface. Based on this, new phase coverage rate a at the reaction interface and the fraction of interface active element occupancy concentration Fs were taken as two variables so that Young's equation and the boundary conditions could be used for mathematical derivation. Dezellus's cosθ-t relationship dynamic equation was also used for further theoretical derivation. Experimental verification: NiSi alloys were refined by vacuum melting furnace, and wetting experiments on graphite substrate were carried out in a high temperature vacuum humidifier by modified seat drop method. Change of contact angle during the reaction wetting process was recorded by a high resolution CCD camera to get contact angle data. The kinetic equation was verified by the data and formula. Through theoretical derivation, kinetic equation of the relationship between solid-liquid interface energy and time was derived. This equation was the same as the equation with instantaneous difference of solid-liquid interface energy as driving force during reaction process, and also identical to the equation derived by the Dezellus's cosθ-t relationship. In the kinetic equation, the solid-liquid interface energy was exponentially reduced over time. Results of wetting experiment by Ni-Si/C system showed that solid-liquid interface energy decreased exponentially with reaction time during the interface reaction control stage, which was consistent with solid-liquid interface energy changing with reaction time in the theoretically derived kinetic equation. Moreover, the activation energy of interfacial reaction of Ni-45wt%Si/C system was calculated to be 239 kJ/mol in combination with the kinetic equation and Arrhenius equation, which was close to the value reported in literature. The reaction kinetics equation is reliable in reactive wetting process. The relationship between solid-liquid interface energy and time is exponentially reduced, which can provide a theoretical reference for surface modification and wettability in coatings.
查看全文  查看/发表评论  下载PDF阅读器
关闭

关于我们 | 联系我们 | 投诉建议 | 隐私保护 | 用户协议

您是第19504050位访问者    渝ICP备15012534号-3

版权所有:《表面技术》编辑部 2014 surface-techj.com, All Rights Reserved

邮编:400039 电话:023-68792193传真:023-68792396 Email: bmjs@surface-techj.com

渝公网安备 50010702501715号