刘晓杰,金康宁,单斌,陈平.织构化冲压模具的应力数值模拟分析[J].表面技术,2019,48(8):9-15.
LIU Xiao-jie,JIN Kang-ning,SHAN Bin,CHEN Ping.Numerical Simulation Analysis of Stress in Textured Stamping Die[J].Surface Technology,2019,48(8):9-15
织构化冲压模具的应力数值模拟分析
Numerical Simulation Analysis of Stress in Textured Stamping Die
投稿时间:2019-02-28  修订日期:2019-08-20
DOI:10.16490/j.cnki.issn.1001-3660.2019.08.002
中文关键词:  数值模拟  表面微织构  冲压模具  应力集中  摩擦系数
英文关键词:numerical simulation  surface micro-texture  stamping die  stress concentration  friction coefficient
基金项目:国家重点研发计划(2018YFC0810500,2017YB0603500);国家自然科学基金(51305023)
作者单位
刘晓杰 北京科技大学 机械工程学院,北京 100083 
金康宁 北京科技大学 机械工程学院,北京 100083 
单斌 北京科技大学 机械工程学院,北京 100083 
陈平 北京科技大学 机械工程学院,北京 100083 
AuthorInstitution
LIU Xiao-jie School of Mechanical Engineering, University of Science and Technology Beijing, Beijing 100083, China 
JIN Kang-ning School of Mechanical Engineering, University of Science and Technology Beijing, Beijing 100083, China 
SHAN Bin School of Mechanical Engineering, University of Science and Technology Beijing, Beijing 100083, China 
CHEN Ping School of Mechanical Engineering, University of Science and Technology Beijing, Beijing 100083, China 
摘要点击次数:
全文下载次数:
中文摘要:
      目的 研究不同形状织构化模具在冲压后的应力大小和分布情况,从织构化模具应力集中角度,为改善模具寿命提供理论指导。方法 利用SolidWorks建立冲压模具三维模型,并且在模具的凹模圆角区域设置三角形、圆形以及二者复合图形,来模拟模具表面的三角形微织构、圆形微织构和复合织构。利用HyperMesh进行网格划分,并在ABAQUS中对冲压过程进行仿真分析,研究表面微织构对冲压模具凹模应力的影响。结果 加工织构的模具,在织构周围出现了应力集中,应力集中主要存在于模具表层很小的范围内,没有延伸至深处。当摩擦系数为0.1时,三角形和圆形复合织构化模具最大应力为1520 MPa,相对于单一的三角形织构化模具,最大应力减小了3.5%,相对于圆形织构化模具,最大应力增加了13.6%。随着摩擦系数的增加,织构化模具在织构处的最大应力均表现出减小的趋势,而单一的三角形和圆形织构化模具在摩擦系数较大时,板料会发生断裂。织构化模具最大应力数值由大到小依次为:三角形织构化模具>三角形和圆形复合织构化模具>圆形织构化模具。结论 表面织构化会造成模具在织构处的应力集中,而且不同形状的织构产生应力集中的程度不同。因此,考虑从改善摩擦学性能的角度提高冲压成形件的成形质量时,需要兼顾考虑模具因表面微织构而产生应力集中,影响其寿命的问题。
英文摘要:
      The work aims to study the stress magnitude and distribution of textured dies in different shapes after stamping, and then provide guidance for improving the life of the die from the perspective of stress concentration of the textured die. A three-dimensional model of stamping die was set in the SolidWorks, and the triangular micro-texture, circular micro-texture and composite micro-texture of the die surface were simulated by setting triangle, circle and composite pattern in the fillet area of the dies. The mesh of textured stamping die was divided by HyperMesh, and the stamping process was established in ABAQUS for numerical simulation. Finally, the effect of surface micro-texture on the stress of stamping die was studied. The stress concentration appeared around the texture of the textured die, but the stress concentration mainly existed in a small range of the surface layer of the die and did not extend to the inside of the die. When the coefficient of friction was 0.1, the maximum stress of the composite textured die was 1520 MPa. Compared to the single triangular textured die, the maximum stress was reduced by 3.5%. Compared to the circular textured die, the maximum stress was increased by 13.6%. With the increase of the friction coefficient, the maximum stress of the textured die at the texture showed a tendency of decrease. The blank of triangular texture die and circular texture die with larger friction coefficient would break during stamping. At the same time, the relationship of the maximum stress of different textured dies was: triangular textured die > triangular and circular composite textured die > circular textured die. Therefore, surface texturing causes stress concentration at the texture of the die, and the textures in different shapes induce a different degree of stress concentration. When the texture is introduced on the die surface to improve the forming quality of the formed part, it is necessary to consider the problem that the stress concentration of the die due to the surface micro-texture affects the life of the die.
查看全文  查看/发表评论  下载PDF阅读器
关闭

关于我们 | 联系我们 | 投诉建议 | 隐私保护 | 用户协议

您是第19957290位访问者    渝ICP备15012534号-3

版权所有:《表面技术》编辑部 2014 surface-techj.com, All Rights Reserved

邮编:400039 电话:023-68792193传真:023-68792396 Email: bmjs@surface-techj.com

渝公网安备 50010702501715号