李夕金,薛文斌.铝酸盐溶液对TiAl合金微弧氧化膜生长和膜层特性的影响[J].表面技术,2019,48(7):97-103.
LI Xi-jin,XUE Wen-bin.Effect of Aluminate Electrolyte on Growth and Properties of Micro-arc Oxidation Coating on TiAl Alloy[J].Surface Technology,2019,48(7):97-103
铝酸盐溶液对TiAl合金微弧氧化膜生长和膜层特性的影响
Effect of Aluminate Electrolyte on Growth and Properties of Micro-arc Oxidation Coating on TiAl Alloy
投稿时间:2019-03-29  修订日期:2019-07-20
DOI:10.16490/j.cnki.issn.1001-3660.2019.07.010
中文关键词:  TiAl合金  微弧氧化  液相等离子沉积  铝酸盐溶液  结构  硬度
英文关键词:TiAl alloy  micro-arc oxidation  plasma electrolysis oxidation  aluminate electrolyte  structure, hardness
基金项目:河南省科技发展计划项目(162300410067)
作者单位
李夕金 1.河南大学 物理与电子学院,河南 开封 475004 
薛文斌 2.北京师范大学 核科学与技术学院,北京 100875 
AuthorInstitution
LI Xi-jin 1.School of Physics and Electronics, Henan University, Kaifeng 475004, China 
XUE Wen-bin 2.School of Nuclear Science and Technology, Beijing Normal University, Beijing 100875, China 
摘要点击次数:
全文下载次数:
中文摘要:
      目的 改善TiAl合金表面结构,提高其力学性能。方法 利用微弧氧化(MAO)方法,在NaAlO2电解液中制备了TiAl合金表面的陶瓷膜,分析微弧氧化过程中不同阶段的膜层生长特点,并研究铝酸盐溶液对微弧氧化膜生长速率的影响。通过硬度测试和显微划痕测试方法,评价膜层对基体硬度的影响和膜/基结合力的变化。利用扫描电子显微镜(SEM)分析不同厚度膜层的结构,结合能谱仪(EDS)分析膜层中元素的分布变化。使用X射线衍射仪(XRD)分析膜层相结构的变化。结果 铝酸盐溶液中微弧氧化膜的厚度随着微弧氧化时间增加,可以达到57 μm。微弧氧化过程分为明火花和暗火花生长两个阶段:前30 min是明火花生长阶段,生长速率可达1 μm/min;后续时间为暗火花生长阶段,生长速率约为0.23 μm/min。膜层包括致密内层和疏松外层。致密层中孔隙较少,Al、Ti含量较低;外层有较大的孔隙,Al含量较高,Ti含量较低。扫描电子显微镜结果显示,膜的内层与基体结合良好。显微划痕实验测得膜/基结合力达到45 N。陶瓷膜的相成分是Rutile-TiO2和Al2TiO5,且随着膜层变厚,Al2TiO5的相对含量上升。陶瓷膜的显微硬度随着膜厚度的增加而增加,120 min膜的显微硬度值可达1450 HV,是基体硬度的3倍多。结论 在NaAlO2中对TiAl合金进行微弧氧化处理,可以制备55 μm的陶瓷层。该膜层与基体间有优异的结合力,可以有效改善基体的表面结构,提高材料的硬度,改善其耐磨性能。
英文摘要:
      The work aims to improve the surface structure and mechanical properties of TiAl alloy. Micro-arc oxidation (MAO) method was used to fabricate ceramic coating on TiAl alloy in NaAlO2 electrolyte. The growth properties of coating were analyzed at different stages during MAO, and the effect of aluminate solution on the growth rate of MAO coating was studied. Micro-hardness test and micro-scratch test were used to evaluate the effect of coating on substrate hardness and the change in binding force of coating/substrate. The structure of the coating with different thickness was studied by scanning electron microscope (SEM), and elements distribution in the coating was analyzed by Energy-dispersive X-ray spectroscopy (EDS). The energy dispersive X-ray detector (XRD) was adopted to investigate the change in the phase structure of coatings. The thickness of the coating increased with the prolongation of MAO time in aluminate solution, and finally reached 57 μm. MAO process was divided into two stages, namely the initial bright-spark stage with a growth rate of 1 μm/min, and the followed dark-spark stage with a growth rate of 0.23 μm/min. The coating included two distinct layers, namely the condensed inner layer and the loose outer layer. The condensed layer had fewer pores and lower concentration of Al and Ti, while the outer layer had larger porosity and higher content of Al and lower content of Ti. From SEM results, the inner layer was bound to the substrate well. The binding force of coating/substrate was about 45 N when measured by the micro-scratch test. The phase components of the coatings were Rutile-TiO2 and Al2TiO5, and the ratio Al2TiO5/Rutile-TiO2 of increased with the increase of coating thickness. The micro-hardness of MAO coating increased with the increase of coating thickness, and a hardness of 1450HV was measured on the coating after 120 min, which was more than three times of that on substrate. 55 μm ceramic coating can be prepared through MAO on TiAl alloy in NaAlO2. The coating has excellent binding force to the substrate, which can improve the surface structure of substrate, improve the hardness of materials and increase the wear resistance.
查看全文  查看/发表评论  下载PDF阅读器
关闭

关于我们 | 联系我们 | 投诉建议 | 隐私保护 | 用户协议

您是第21803083位访问者    渝ICP备15012534号-3

版权所有:《表面技术》编辑部 2014 surface-techj.com, All Rights Reserved

邮编:400039 电话:023-68792193传真:023-68792396 Email: bmjs@surface-techj.com

渝公网安备 50010702501715号