马宝霞,朱林程,邹兵林.CMAS高温腐蚀硅酸铒材料的失效分析[J].表面技术,2019,48(6):261-267.
MA Bao-xia,ZHU Lin-cheng,ZOU Bing-lin.Failure Analysis of Barium Silicate Material Corroded by CMAS at High Temperature[J].Surface Technology,2019,48(6):261-267
CMAS高温腐蚀硅酸铒材料的失效分析
Failure Analysis of Barium Silicate Material Corroded by CMAS at High Temperature
投稿时间:2018-10-30  修订日期:2019-06-20
DOI:10.16490/j.cnki.issn.1001-3660.2019.06.031
中文关键词:  CMAS  Er2SiO5  Er2Si2O7  失效  抗腐蚀性  腐蚀机制
英文关键词:CMAS  Er2SiO5  Er2Si2O7  failure  corrosion resistance  corrosion mechanism
基金项目:国家自然科学基金项目青年基金(51602081)
作者单位
马宝霞 1.哈尔滨理工大学,哈尔滨 150040 
朱林程 1.哈尔滨理工大学,哈尔滨 150040 
邹兵林 2.中科院长春应用化学研究所,长春 130021 
AuthorInstitution
MA Bao-xia 1.Harbin University of Science and Technology, Harbin 150040, China 
ZHU Lin-cheng 1.Harbin University of Science and Technology, Harbin 150040, China 
ZOU Bing-lin 2.Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130021, China 
摘要点击次数:
全文下载次数:
中文摘要:
      目的 研究CMAS在高温下对硅酸铒材料的腐蚀行为。方法 通过固相反应合成高纯Er2SiO5和Er2Si2O7粉末,通过烧结获得Er2SiO5和Er2Si2O7块体。用35%CaO-10%MgO-7%Al2O3-48%SiO2(摩尔分数)的CMAS涂覆在烧结后的硅酸铒块体表面,将其在1300 ℃高温下进行不同时间的保温。利用X射线衍射仪(XRD)及扫描电镜(SEM),分析腐蚀产物的物相组成和腐蚀后块体材料的显微组织。结果 在1300 ℃高温下,熔融态CMAS沿硅酸铒块体材料表面的微裂纹和孔隙渗入内部。宏观形貌表明,CMAS在很短时间内就完全渗入Er2SiO5块体内部,表面并未发现玻璃态的CMAS,而Er2Si2O7块体表面中心处却残留有缩聚的玻璃态CMAS。熔融CMAS与稀土铒硅酸盐反应,生成了柱状磷灰石相Ca2Er8(SiO4)6O2。CMAS熔化后,对Er2SiO5/Er2Si2O7有很好的润湿性,Er2SiO5/Er2Si2O7与熔化的CMAS紧密接触并发生溶解,Er和Si会进入到熔融的CMAS中,磷灰石相Ca2Er8(SiO4)6O2从CMAS熔融物中结晶出来。Er2Si2O7块体经CMAS渗透后,生成的磷灰石相比较致密,能有效阻止CMAS通过柱状晶间隙或者孔洞继续大量渗入,CMAS的渗透速率明显降低,渗透深度比同腐蚀时间下对Er2SiO5的要小。结论 稀土铒双硅酸盐Er2Si2O7可以有效阻止CMAS渗入,表现出更好的CMAS腐蚀抗性。
英文摘要:
      The work aims to study the corrosion behavior of CMAS corroding barium silicate at high temperature. Firstly, high purity Er2SiO5 and Er2Si2O7 powders were synthesized by solid state reaction. Er2SiO5 and Er2Si2O7 bulks were sintered. CMAS with 35 mol.% CaO-10 mol.% MgO-7 mol.% Al2O3-48 mol.% SiO2 was coated on the surface of the sintered barium silicate bulks. Coated bulk materials were heated at 1300 ℃ and held for different times. The phase compositions of the corrosion products and the microstructures of the bulks after corrosion were analyzed by X-ray diffractometry (XRD) and scanning electron microscopy (SEM). At high temperature of 1300 ℃, the molten CMAS permeated through the cracks and pores on barium silicate bulks. The macroscopic morphology indicated that the CMAS completely infiltered into the interior of the Er2SiO5 bulks in a short time, and no glassy CMAS was found on the surface, but the condensed glassy CMAS remained at the center of the Er2Si2O7 bulks. The molten CMAS reacted with barium silicate to form a columnar apatite phase Ca2Er8(SiO4)6O2. The molten CMAS had good wettability with Er2SiO5/Er2Si2O7, so Er2SiO5/Er2Si2O7 and molten CMAS had close contact and dissolved each other. Element Er and Si entered into molten CMAS, and the apatite phase Ca2Er8(SiO4)6O2 formed. After the Er2Si2O7 bulk was infiltered by CMAS, the formed apatite was relatively dense, which could effectively prevent the CMAS from continuing to infilter through the gaps of columnar crystal or the pores, and the infiltering rate of CMAS was significantly reduced, and the infiltering depth was smaller than that of Er2SiO5 at the same corroding time. Rare earth bait double silicate Er2Si2O7 can effectively prevent CMAS from infiltering and exhibit better CMAS corrosion resistance.
查看全文  查看/发表评论  下载PDF阅读器
关闭

关于我们 | 联系我们 | 投诉建议 | 隐私保护 | 用户协议

您是第20119757位访问者    渝ICP备15012534号-3

版权所有:《表面技术》编辑部 2014 surface-techj.com, All Rights Reserved

邮编:400039 电话:023-68792193传真:023-68792396 Email: bmjs@surface-techj.com

渝公网安备 50010702501715号