徐阳,齐振一,王志浩,田东波.纳米晶复合涂层应用于火星玻璃盖片防尘的探索[J].表面技术,2019,48(5):167-171.
XU Yang,QI Zhen-yi,WANG Zhi-hao,TIAN Dong-bo.Exploration for Nano-crystalline Composite Coatings in Dust-proof of Cover Glasses on Mars[J].Surface Technology,2019,48(5):167-171
纳米晶复合涂层应用于火星玻璃盖片防尘的探索
Exploration for Nano-crystalline Composite Coatings in Dust-proof of Cover Glasses on Mars
投稿时间:2018-09-29  修订日期:2019-05-20
DOI:10.16490/j.cnki.issn.1001-3660.2019.05.025
中文关键词:  纳米晶  复合涂层  接触面积  增透  超疏水  粘附力  除尘效率
英文关键词:nano-crystalline  composite coating  contact area  anti-reflection  super-hydrophobic  adhesion force  efficiency of dust cleaning
基金项目:
作者单位
徐阳 1.中国科学院上海硅酸盐研究所,上海 201899 
齐振一 1.中国科学院上海硅酸盐研究所,上海 201899 
王志浩 2.北京卫星环境工程研究所,北京 100094 
田东波 2.北京卫星环境工程研究所,北京 100094 
AuthorInstitution
XU Yang 1.Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 201899, China 
QI Zhen-yi 1.Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 201899, China 
WANG Zhi-hao 2.Beijing Institute of Spacecraft Environment Engineering, Beijing 100094, China 
TIAN Dong-bo 2.Beijing Institute of Spacecraft Environment Engineering, Beijing 100094, China 
摘要点击次数:
全文下载次数:
中文摘要:
      目的 制备超微结构的纳米晶复合涂层,降低火星环境中灰尘颗粒在玻璃表面的粘附,并通过翻转操作,最大限度地清除沉积的灰尘,恢复太阳能电池的发电能力。方法 采用水热法和表面修饰,制备了纳米晶复合防尘涂层。通过电子显微镜、分光光度计、接触角仪和翻转除尘试验分别对涂层的微观结构、可见-近红外光透过率、表面性质和除尘效率进行了分析。结果 由直径大约为27 nm的ZnO纳米棒构成的独特涂层结构,使灰尘颗粒与涂层表面的接触面积相比于普通玻璃减小了一个数量级,可见光区的透过率提高了1.1%,近红外区透过率提高了0.4%。用氟化物进行表面修饰后,涂层的水接触角由25°~45°升高至155°~165°。经90°缓慢翻转,纳米晶复合涂层对50~100 μm和30~50 μm灰尘颗粒的清除效率分别为80%~90%和60%~70%;而在相同测试条件下,普通玻璃的防尘效率仅为37.5%和6.3%。由翻转后涂层表面灰尘的分布情况和倾斜表面上单颗粒的受力分析发现,灰尘颗粒的脱落存在滑落和滚落两种模式,高位落下的颗粒将部分动能传递给低位静止的颗粒,促使更多静止颗粒的滑落或滚落,形成“雪崩”状的特殊形貌。结论 ZnO纳米晶复合涂层不仅可以提高可见光和近红外光的透过率,还可以极大地减小与灰尘颗粒的接触面积,降低颗粒的粘附力,在不使用高压电能的情况下,经过翻转操作,清除效率可达80%以上,这将为火星上灰尘的清除提供一种安全的方式。
英文摘要:
      The work aims to prepare ultrastructure nano-crystalline composite coatings to decrease the dust adhesion on cover glasses and recover the power supply of solar cells by cleaning the deposited dust furthest through a flipping operation in Mars environment. The nano-structured dust proof coatings were fabricated by aqueous chemical growth method with three different reaction times and surface modification procedure. The microstructure, visible- near-infrared light transmittance, surface properties and dust removal efficiency of coatings were analyzed by electron microscope, spectrophotometer, contact angle meter and flipping dust removal test. The unique coating structure formed by ZnO nanorods with ~27 nm made the contact area of dust grains with the composite coating dramatically decrease by one magnitude, compared to bare glass. The transmittance increased by 1.1% in visible region and 0.4% in near IR region. The water contact angle changed from 25°~45° to 155°~165° after surface modification by fluorochamicals. Through a slow flipping for 90 degrees, pre-deposited dust on the nano-crystalline composite coatings was cleaned by 80%~90% for grains of 50~100 μm diameters and by 60%~70% for the ones of 30~50 μm. At the same test condition, the dust proof efficiencies of bare glass were only 37.5% and 6.3%. From the dust distributions on the flipped samples and the force diagram of an individual particle on a tilted plane further, the particle falling included two basic modes of slipping and rolling, and the kinetic energy of a falling particle transferred to one or more static particles at the lower position resulting in an “avalanche” morphology. ZnO nano-crystalline composite coatings can not only improve the transmittance of visible light and near infrared light, but also greatly reduce the contact area with dust particles and reduce the adhesion of particles. Under the condition of not using high-voltage electrical energy, the removal efficiency can reach more than 80% through flipping operation, which will provide a safe way for removing dust on Mars.
查看全文  查看/发表评论  下载PDF阅读器
关闭

关于我们 | 联系我们 | 投诉建议 | 隐私保护 | 用户协议

您是第20031975位访问者    渝ICP备15012534号-3

版权所有:《表面技术》编辑部 2014 surface-techj.com, All Rights Reserved

邮编:400039 电话:023-68792193传真:023-68792396 Email: bmjs@surface-techj.com

渝公网安备 50010702501715号