徐仰立,张冬云,郭彦梧,胡松涛,陈润平.选区激光熔化成形Ti6Al4V合金拉伸性能提高的研究[J].表面技术,2019,48(5):108-115.
XU Yang-li,ZHANG Dong-yun,GUO Yan-wu,HU Song-tao,CHEN Run-ping.Improvement of Tensile Properties of Ti6Al4V Alloy by Selective Laser Melting[J].Surface Technology,2019,48(5):108-115
选区激光熔化成形Ti6Al4V合金拉伸性能提高的研究
Improvement of Tensile Properties of Ti6Al4V Alloy by Selective Laser Melting
投稿时间:2018-11-30  修订日期:2019-05-20
DOI:10.16490/j.cnki.issn.1001-3660.2019.05.017
中文关键词:  选区激光熔化  Ti6Al4V  延伸率  屈服强度  原位分解  拉伸性能
英文关键词:selective laser melting  Ti6Al4V alloy  ductility  yield strength  situ martensite decomposition  tensile properties
基金项目:国家自然科学基金(51675012)
作者单位
徐仰立 北京工业大学 激光工程研究院,北京 100124 
张冬云 北京工业大学 激光工程研究院,北京 100124 
郭彦梧 北京工业大学 激光工程研究院,北京 100124 
胡松涛 北京工业大学 激光工程研究院,北京 100124 
陈润平 北京工业大学 激光工程研究院,北京 100124 
AuthorInstitution
XU Yang-li Institute of Laser Engineering, Beijing University of Technology, Beijing 100124, China 
ZHANG Dong-yun Institute of Laser Engineering, Beijing University of Technology, Beijing 100124, China 
GUO Yan-wu Institute of Laser Engineering, Beijing University of Technology, Beijing 100124, China 
HU Song-tao Institute of Laser Engineering, Beijing University of Technology, Beijing 100124, China 
CHEN Run-ping Institute of Laser Engineering, Beijing University of Technology, Beijing 100124, China 
摘要点击次数:
全文下载次数:
中文摘要:
      目的 提高选区激光熔化(SLM)成形Ti6Al4V合金的成形态延伸率,使成形态组织的拉伸性能接近或达到锻件标准。方法 采用原位分解的方法,通过调节SLM成形过程中的工艺参数,如激光功率、能量密度、层厚、支撑所占面积比等,使已成形层中的针状α¢马氏体在温度场作用下分解成α+β相。利用微观组织分析(SEM)、物相分析(XRD)和拉伸性能测试,明确Ti6Al4V合金发生原位分解的条件。结果 增加SLM制造的层厚(60 μm),提高激光功率(375 W),有利于降低SLM制造过程中的冷却速度和温度梯度,使马氏体组织发生a′→a+b相变。SEM和XRD结果表明,Ti6Al4V合金原位分解后的成形态显微组织由针状α相和颗粒状β相构成,不同于高温梯度和极快冷却速度下的常规SLM成形态组织。拉伸性能测试结果表明,Ti6Al4V经过原位分解后,在提高延伸率的同时,仍保持高屈服强度,屈服强度达到1100 MPa以上,延伸率达到8%。断裂机制为韧性断裂。结论 SLM成形的Ti6Al4V合金经原位分解后,拥有更好的韧性,成形态的拉伸性能得到提高。
英文摘要:
      The work aims to improve the elongation of Ti6Al4V alloy formed by selective laser melting (SLM), so that the tensile properties of the formed structure can approach or meet the forging standard. The in-situ decomposition method was used to decompose the acicular α' martensite in the formed layer into α+β phase by adjusting the process parameters such as laser power, energy density, thickness of the layer and the area ratio of the support in the SLM forming process under the thermal cycle of heat source reciprocating motion for reciprocating heating and cooling. By means of microstructure observations (SEM), phase analysis (XRD) and tensile test, the conditions for in-situ decomposition of Ti6Al4V alloy were determined. Increasing the thickness of SLM layer (60 μm) and laser power (375 W) was beneficial to reducing the cooling rate and temperature gradient in SLM manufacturing process, resulting in a′→a+b transformation of martensite structure. The results of SEM and XRD showed that the morphology of Ti6Al4V alloy after in-situ decomposition was composed of acicular α phase and granular β phase, which was different from that of conventional SLM at high temperature gradient and extremely fast cooling rate. The tensile test results showed that the elongation of Ti6Al4V specimens increased while high yield strength was maintained after in-situ decomposition. The yield strength reached more than 1100 MPa, and the elongation reached 8%. The fracture mechanism was ductile fracture. SLM-formed Ti6Al4V alloy has better toughness after in-situ decomposition, which can improve the tensile properties of Ti6Al4V alloy.
查看全文  查看/发表评论  下载PDF阅读器
关闭

关于我们 | 联系我们 | 投诉建议 | 隐私保护 | 用户协议

您是第19498859位访问者    渝ICP备15012534号-3

版权所有:《表面技术》编辑部 2014 surface-techj.com, All Rights Reserved

邮编:400039 电话:023-68792193传真:023-68792396 Email: bmjs@surface-techj.com

渝公网安备 50010702501715号