彭文山,邢少华,曹学文,侯健,胥锟,韩明一.水平弯管含砂分散泡状流冲蚀机理分析[J].表面技术,2019,48(4):237-244.
PENG Wen-shan,XING Shao-hua,CAO Xue-wen,HOU Jian,XU Kun,HAN Ming-yi.Analysis of Sand Erosion Mechanism of Horizontal Pipe Bend under Dispersed Bubble Flow[J].Surface Technology,2019,48(4):237-244
水平弯管含砂分散泡状流冲蚀机理分析
Analysis of Sand Erosion Mechanism of Horizontal Pipe Bend under Dispersed Bubble Flow
投稿时间:2018-08-29  修订日期:2019-04-20
DOI:10.16490/j.cnki.issn.1001-3660.2019.04.034
中文关键词:  砂粒  冲蚀  弯管  分散泡状流  实验  VOF模型
英文关键词:sand  erosion  pipe bend  dispersed bubble flow  experiment  VOF model
基金项目:
作者单位
彭文山 1.中国船舶重工集团公司第七二五研究所 海洋腐蚀与防护重点实验室,山东 青岛 266237 
邢少华 1.中国船舶重工集团公司第七二五研究所 海洋腐蚀与防护重点实验室,山东 青岛 266237 
曹学文 2.中国石油大学(华东) 储运与建筑工程学院,山东 青岛 266580 
侯健 1.中国船舶重工集团公司第七二五研究所 海洋腐蚀与防护重点实验室,山东 青岛 266237 
胥锟 3.惠州兴盛石化仓储有限公司,广东 惠州516081 
韩明一 4.廊坊中油朗威工程项目管理有限公司,河北 廊坊 065000 
AuthorInstitution
PENG Wen-shan 1.State Key Laboratory for Marine Corrosion and Protection, Luoyang Ship Material Research Institute (LSMRI), Qingdao 266237, China 
XING Shao-hua 1.State Key Laboratory for Marine Corrosion and Protection, Luoyang Ship Material Research Institute (LSMRI), Qingdao 266237, China 
CAO Xue-wen 2.College of Pipeline and Civil Engineering, China University of Petroleum, Qingdao 266580, China 
HOU Jian 1.State Key Laboratory for Marine Corrosion and Protection, Luoyang Ship Material Research Institute (LSMRI), Qingdao 266237, China 
XU Kun 3.Huizhou Xingsheng Petrochemical Storage Co., Ltd, Huizhou 516081, China 
HAN Ming-yi 4.China Petroleum Longway Engineering Project Management Co., Ltd, Langfang 065000, China 
摘要点击次数:
全文下载次数:
中文摘要:
      目的 揭示水平弯管含砂分散泡状流的冲蚀机理。方法 构建气液固多相流冲蚀实验环道,研究管道内流体流动状态及管道三维冲蚀速率。采用显微分析方法研究管道冲蚀形貌,并提出基于VOF模型和DPM模型耦合的瞬态冲蚀仿真方法。实验与仿真相结合分析管道内部气液分布、颗粒运动对冲蚀形貌的影响。结果 弯管冲蚀最严重区域出现在弯头出口处(θ=90?),而冲蚀最严重位置则出现在该截面φ=45?以及φ=90?两个位置上。仿真可知整个弯管冲蚀严重的区域边界呈现出较为均匀的抛物线形状。砂粒对弯管的冲蚀作用主要以冲击变形和微切削摩擦为主,砂粒的直接冲击碰撞导致试样表面产生密集冲蚀坑,冲蚀坑周围有基体材料外翻形成的“唇片”。分散泡状流中的固体颗粒大部分分散在液相中,弯头处滞止区使得弯头处截面的含液率及颗粒含量大于上下游直管段截面。气体的存在改变了砂粒在管道中的运动状态,大大加剧了弯管的冲蚀。结论 水平弯管含砂分散泡状流冲蚀严重区域、冲蚀形貌与管道内部气液分布及砂粒运动直接相关,多相流冲蚀瞬态仿真方法可准确地预测管道冲蚀。
英文摘要:
      The work aims to reveal the erosion mechanism of horizontal pipe bend under dispersed bubble flow. A gas-liquid-solid multiphase flow erosion experimental loop was constructed to study the flow state in the pipe bend and the three-dimensional erosion rate of the pipe bend. Microscopic analysis was used to study the erosion morphology of pipe bend. An erosion simulation method based on the coupling of VOF model and DPM model was proposed. Experiment and simulation were combined to analyze the influence of gas-liquid distribution and particle motion on the erosion morphology of the pipe bend. The most severe erosion area of the pipe bend appeared at the exit of the elbow (θ=90?), and the most severe erosion location occurred in the two positions of the section at φ=45? and φ=90?. The simulation results indicated that the edge of the severe erosion area showed a more uniform parabolic shape. The effect of sand on the pipe bend erosion was mainly based on impact deformation and micro-cutting friction. The direct impact collision of the sand caused dense erosion pits on the surface of the sample, and there were lips formed by the outward turning of the base material around the erosion pits. The solid particles in the dispersed bubble flow were mostly entrained in the liquid phase. The stagnation zone at the elbow made the cross-section liquid content and particle content of the cross section at the elbow larger than that at the cross section of the upstream and downstream straight pipes. The presence of gas changed the movement of the sand in the pipeline, greatly increasing the erosion of the pipe bend. The severe erosion area and erosion profile of the horizontal pipe bend under dispersed bubble flow are directly related to the gas-liquid distribution inside the pipeline and the sand movement. Multiphase flow erosion transient simulation can accurately predict pipeline erosion.
查看全文  查看/发表评论  下载PDF阅读器
关闭

关于我们 | 联系我们 | 投诉建议 | 隐私保护 | 用户协议

您是第19954605位访问者    渝ICP备15012534号-3

版权所有:《表面技术》编辑部 2014 surface-techj.com, All Rights Reserved

邮编:400039 电话:023-68792193传真:023-68792396 Email: bmjs@surface-techj.com

渝公网安备 50010702501715号