郭胜锋,赖利民,丁凯露,张红菊,王敬丰,潘复生.镁合金表面非晶涂层的构筑及其腐蚀行为[J].表面技术,2019,48(3):40-46.
GUO Sheng-feng,LAI Li-min,DING Kai-lu,ZHANG Hong-ju,WANG Jing-feng,PAN Fu-sheng.Construction and Corrosion Behaviour of Amorphous Coating on Magnesium Alloy[J].Surface Technology,2019,48(3):40-46
镁合金表面非晶涂层的构筑及其腐蚀行为
Construction and Corrosion Behaviour of Amorphous Coating on Magnesium Alloy
投稿时间:2018-12-10  修订日期:2019-03-20
DOI:10.16490/j.cnki.issn.1001-3660.2019.03.006
中文关键词:  镁合金  超音速火焰喷涂  铁基非晶涂层  硬度  耐蚀性  模拟海水  模拟酸雨
英文关键词:magnesium alloy  high velocity oxygen fuel  Fe-based amorphous coating  hardness  corrosion resistance  sim-ulated seawater  simulated acid rain
基金项目:国家自然科学基金(51671162);重庆市基础与前沿研究计划(重点)项目(cstc2015jcyjBX0107);中央高校基本科研业务费专项资金(XDJK2017B054)
作者单位
郭胜锋 1.西南大学,重庆 400715 
赖利民 1.西南大学,重庆 400715 
丁凯露 1.西南大学,重庆 400715 
张红菊 2.重庆大学,重庆 400044 
王敬丰 2.重庆大学,重庆 400044 
潘复生 2.重庆大学,重庆 400044 
AuthorInstitution
GUO Sheng-feng 1.Southwest University, Chongqing 400715, China 
LAI Li-min 1.Southwest University, Chongqing 400715, China 
DING Kai-lu 1.Southwest University, Chongqing 400715, China 
ZHANG Hong-ju 2.Chongqing University, Chongqing 400044, China 
WANG Jing-feng 2.Chongqing University, Chongqing 400044, China 
PAN Fu-sheng 2.Chongqing University, Chongqing 400044, China 
摘要点击次数:
全文下载次数:
中文摘要:
      目的 提高镁合金的耐腐蚀性能。方法 采用超音速火焰喷涂技术,在AZ61镁合金表面引入NiCrAl作为中间层,最终在镁合金表面构筑一层铁基非晶涂层。通过扫描电子显微镜、X射线衍射仪、差热分析仪、显微硬度测试仪、开路电位测试仪、动电位极化测试仪、X射线光电子能谱仪和接触角测量仪,分别评价了镁合金基体和铁基非晶涂层的形貌特征、微观结构、热稳定性、力学性能、腐蚀行为和表面性质。结果 在AZ61镁合金表面成功构筑了一层厚度约200~240 μm的铁基非晶涂层,该涂层在XRD有效分辨率内呈单一非晶结构。热分析结果表明,该非晶涂层的起始晶化温度可达657 ℃,具有极高的热稳定性。铁基非晶涂层和AZ61镁合金的显微硬度分别为892HV和71HV,合金表面显微硬度提高了10倍以上。在模拟海水中,AZ61镁合金和铁基非晶防护涂层的稳态开路电位分别为-0.59 V和-1.58 V,自腐蚀电流密度分别为80 μA/cm2和4 μA/cm2;在酸雨介质中,镁合金和非晶涂层的稳态开路电位分别为-0.45 V和-1.51 V,自腐蚀电流密度分别为7.27 μA/cm2和1.64 μA/cm2。去离子水在AZ61镁合金的表面润湿角为(59.8±1.5)?,而铁基非晶涂层的接触角为(74.4±0.6)?。结论 在镁合金表面构筑铁基非晶涂层,可以显著提高镁合金的耐蚀性,同时非晶涂层高的热稳定性和显微硬度,意味着良好的耐热和耐磨性能。
英文摘要:
      The work aims to improve the corrosion resistance of magnesium alloys. AZ61 magnesium alloy coated with NiCrAl by high-velocity oxy-fuel thermally spraying was used as the intermediate layer and a layer of Fe-based amorphous coating was fabricated on magnesium alloy. The morphology characteristics, microstructure, thermal stability, mechanical properties, corrosion behavior and surface properties of the Fe-based amorphous coating and AZ61 magnesium alloy were investigated by scanning electron microscope, X-ray diffractometer, differential thermal analyzer, microhardness tests, open circuit potential measurement, potentiodynamic polarization tests, X-ray photoelectron spectroscopy and contact angle measurement, respectively. A layer of Fe-based amorphous coating with a thickness of about 200~240 μm was successfully formed on the surface of AZ61 magnesium alloy. The coating exhibited an amorphous structure within the effective resolution of XRD. From the thermal analysis, the crystallization temperature of the coating with extremely high thermal stability was up to 657 ℃. The microhardness of amorphous coating and AZ61 magnesium alloy were 892 HV and 71 HV, respectively, which was increased by more than 10 times of hardness. In simulated seawater, the steady-state open circuit potentials and corrosion current densities of the Fe-based amorphous coatings and AZ61 magnesium alloy were -0.59 V and -1.58 V, 80 μA/cm2 and 4 μA/cm2, respectively. In the simulated acid rain, the open circuit potentials and corrosion current densities of the Fe-based amorphous coatings and AZ61 magnesium alloy were -0.45 V and -1.51 V, 7.27 μA/cm2 and 1.64 μA/cm2, respectively. The surface wetting angle of deionized water in AZ61 magnesium alloy was (59.8±1.5)?, while the contact angle of Fe-based amorphous coating was (74.4±0.6)?. In-situ formed Fe-based amorphous coating on the surface of magnesium alloy can significantly improve the corrosion resistance of magnesium alloy. In addition, the high thermal stability and microhardness imply the improvement of heat resistance and wear performance of magnesium alloy.
查看全文  查看/发表评论  下载PDF阅读器
关闭

关于我们 | 联系我们 | 投诉建议 | 隐私保护 | 用户协议

您是第20047835位访问者    渝ICP备15012534号-3

版权所有:《表面技术》编辑部 2014 surface-techj.com, All Rights Reserved

邮编:400039 电话:023-68792193传真:023-68792396 Email: bmjs@surface-techj.com

渝公网安备 50010702501715号