张群莉,姚中志,周塘,姚建华,Volodymyr S. Kovalenko.前驱体对激光熔覆复合溶胶凝胶制备陶瓷涂层的影响[J].表面技术,2019,48(2):1-9.
ZHANG Qun-li,YAO Zhong-zhi,ZHOU Tang,YAO Jian-hua,Volodymyr S. Kovalenko.Effect of Precursor on Preparation of Ceramic Coating by Laser Cladding Composite Sol-Gel[J].Surface Technology,2019,48(2):1-9
前驱体对激光熔覆复合溶胶凝胶制备陶瓷涂层的影响
Effect of Precursor on Preparation of Ceramic Coating by Laser Cladding Composite Sol-Gel
投稿时间:2018-10-23  修订日期:2019-02-20
DOI:10.16490/j.cnki.issn.1001-3660.2019.02.001
中文关键词:  激光熔覆  溶胶凝胶  3Cr13不锈钢  TiC  Cr7C3  碳纳米管
英文关键词:laser cladding  3Cr13 stainless steel  sol-gel  TiC  Cr7C3  CNTs
基金项目:国家自然科学基金(51605441);浙江省公益技术应用研究项目(2017C31048)
作者单位
张群莉 1.浙江工业大学 a.激光先进制造研究院 b.机械工程学院,杭州 310014 
姚中志 1.浙江工业大学 a.激光先进制造研究院 b.机械工程学院,杭州 310014 
周塘 1.浙江工业大学 a.激光先进制造研究院 b.机械工程学院,杭州 310014 
姚建华 1.浙江工业大学 a.激光先进制造研究院 b.机械工程学院,杭州 310014 
Volodymyr S. Kovalenko 2.乌克兰国立科技大学 激光技术研究所,乌克兰 基辅 03056 
AuthorInstitution
ZHANG Qun-li 1.a.Institute of Laser Advanced Manufacturing, b.School of Mechanical Engineering, Zhejiang University of Technology, Hangzhou 310014, China 
YAO Zhong-zhi 1.a.Institute of Laser Advanced Manufacturing, b.School of Mechanical Engineering, Zhejiang University of Technology, Hangzhou 310014, China 
ZHOU Tang 1.a.Institute of Laser Advanced Manufacturing, b.School of Mechanical Engineering, Zhejiang University of Technology, Hangzhou 310014, China 
YAO Jian-hua 1.a.Institute of Laser Advanced Manufacturing, b.School of Mechanical Engineering, Zhejiang University of Technology, Hangzhou 310014, China 
Volodymyr S. Kovalenko 2.Laser Technology Research Institute, National Technical University of Ukraine “Kiev Polytechnic Institute”, Kiev 03056, Ukraine 
摘要点击次数:
全文下载次数:
中文摘要:
      目的 研究不同前驱体配比下,激光熔覆复合溶胶凝胶在3Cr13不锈钢表面制备的陶瓷涂层的性能,并对强化机理进行分析。方法 通过溶胶凝胶法制备均匀的前驱体,即TiO2和C(微米石墨和碳纳米管),利用激光熔覆技术,在3Cr13不锈钢基体表面制备出高性能的涂层。采用光学显微镜、X射线衍射仪、扫描电镜和能谱仪对涂层组织和相成分进行分析,采用维氏硬度计对涂层的硬度进行测试,采用HT-600型高温摩擦磨损试验机测试基体和熔覆层在常温下的磨损性能。结果 通过溶胶凝胶法,制备出均匀的TiO2和C混合粉末。激光熔覆后,在覆层中均匀分布着TiC和Cr7C3强化相。改变前驱体配比,当C和TiO2的摩尔比增大时,涂层组织明显细化,且涂层中无气孔,显微硬度也有较大提高。当n(TiO2)∶n(C)=1∶8时,次表面显微硬度达到810HV0.2,涂层硬度从上到下呈现递减的趋势,且涂层的耐磨性最好,为基体的4.5倍。 结论 增大C和TiO2两者摩尔比,可以提高熔覆层的显微硬度和耐磨性。在熔池中,TiC密度较小,涂层中硬质颗粒从上到下依次减少,与之对应,硬度也依次递减。同时,碳纳米管的加入将对涂层起到细晶强化的效果。Ti与碳纳米管和微米石墨结合生成微米级和亚微米级TiC,提高了形核率,Cr7C3以亚微米级TiC为非均质核心,形核长大,生成均匀分布的Cr7C3强化相。
英文摘要:
      The work aims to study the properties of the ceramic coating of 3Cr13 stainless steel prepared by laser cladding composite sol gel under the different ratios of precursor, and analyze the strengthening mechanism. A homogeneous precursor of TiO2 and C (micro-graphite and carbon nanotubes (CNTs)) was prepared by sol-gel method, and a high-performance coating was prepared on the surface of the 3Cr13 stainless steel substrate by laser cladding. The microstructure and phase composition of the coating were analyzed by optical microscopy (OM), X-ray diffractometry (XRD), scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS). The hardness of the coating was tested by Vickers hardness tester and the wear resistance of substrate and cladding layer was tested by HT-600 high temperature friction machine. A homogeneous mixed powder of TiO2 and C could be prepared by the sol-gel method. The TiC and Cr7C3 strengthening phases were uniformly distributed in the cladding layer. If the precursor ratio was changed, when the moral ratio of C and TiO2 increased, the coating structure was remarkably refined, there was no pore in the coating, and the microhardness was also greatly improved. When n(TiO2)∶n(C) was 1∶8, the microhardness of subsurface reached 810HV0.2 and the coating tended to decrease and had the best wear resistance which was 4.5 times that of the substrate. When the mole ratio of C and TiO2 is increased, the microhardness and wear resistance of cladding layer can be improved. The hard particles in the coating gradually decreases from top to bottom when the TiC density is lower in the molten pool. Correspondingly, the hardness of the coating has a tendency of decrease. At the same time, the addition of CNTs has a fine grain strengthening effect on the coating. The Ti element combines with CNTs and micron graphite to form micro-scale TiC, and then Cr7C3 will use micro-scale TiC as a nucleus to grow and form a wrap-like Cr7C3 strengthening phase.
查看全文  查看/发表评论  下载PDF阅读器
关闭

关于我们 | 联系我们 | 投诉建议 | 隐私保护 | 用户协议

您是第19965911位访问者    渝ICP备15012534号-3

版权所有:《表面技术》编辑部 2014 surface-techj.com, All Rights Reserved

邮编:400039 电话:023-68792193传真:023-68792396 Email: bmjs@surface-techj.com

渝公网安备 50010702501715号