周永,孔翠翠,李晓伟,孙丽丽,郭鹏,周佳,李玉宏,李文献,汪爱英,柯培玲.Ti/Al过渡层对共掺杂类金刚石薄膜性能的影响[J].表面技术,2019,48(1):268-275.
ZHOU Yong,KONG Cui-cui,LI Xiao-wei,SUN Li-li,GUO Peng,ZHOU Jia,LI Yu-hong,LI Wen-xian,WANG Ai-ying,KE Pei-ling.Effect of Ti/Al Transition Layer on Properties of Co-doped Diamond-like Carbon Films[J].Surface Technology,2019,48(1):268-275
Ti/Al过渡层对共掺杂类金刚石薄膜性能的影响
Effect of Ti/Al Transition Layer on Properties of Co-doped Diamond-like Carbon Films
投稿时间:2018-07-03  修订日期:2019-01-20
DOI:10.16490/j.cnki.issn.1001-3660.2019.01.035
中文关键词:  类金刚石薄膜  Ti-Al共掺杂  过渡层  结合力  残余应力  机械性能
英文关键词:diamond-like carbon film  Ti-Al co-doped  transition layer  residual stress  mechanical property
基金项目:国家自然科学基金(51772307);浙江省重大科技招标项目(2017C01001);宁波市自然基金项目(2017A610008);甘肃省高等学校科研项目(2017A-273);兰州理工大学新能源学院重点科研项目(LUT-XNY-2017009)
作者单位
周永 1.上海大学 材料科学与工程学院 材料所,上海 200072;2.中国科学院宁波材料技术与工程研究所 中国科学院海洋新材料与应用技术重点实验室 浙江省海洋材料与防护技术重点实验室,浙江 宁波 315201 
孔翠翠 2.中国科学院宁波材料技术与工程研究所 中国科学院海洋新材料与应用技术重点实验室 浙江省海洋材料与防护技术重点实验室,浙江 宁波 315201 
李晓伟 2.中国科学院宁波材料技术与工程研究所 中国科学院海洋新材料与应用技术重点实验室 浙江省海洋材料与防护技术重点实验室,浙江 宁波 315201 
孙丽丽 2.中国科学院宁波材料技术与工程研究所 中国科学院海洋新材料与应用技术重点实验室 浙江省海洋材料与防护技术重点实验室,浙江 宁波 315201 
郭鹏 2.中国科学院宁波材料技术与工程研究所 中国科学院海洋新材料与应用技术重点实验室 浙江省海洋材料与防护技术重点实验室,浙江 宁波 315201 
周佳 1.上海大学 材料科学与工程学院 材料所,上海 200072;2.中国科学院宁波材料技术与工程研究所 中国科学院海洋新材料与应用技术重点实验室 浙江省海洋材料与防护技术重点实验室,浙江 宁波 315201 
李玉宏 3.酒泉职业技术学院 甘肃省太阳能发电系统工程重点实验室,甘肃 酒泉 735000;4.酒泉新能源研究院,甘肃 酒泉 735000 
李文献 1.上海大学 材料科学与工程学院 材料所,上海 200072 
汪爱英 2.中国科学院宁波材料技术与工程研究所 中国科学院海洋新材料与应用技术重点实验室 浙江省海洋材料与防护技术重点实验室,浙江 宁波 315201 
柯培玲 2.中国科学院宁波材料技术与工程研究所 中国科学院海洋新材料与应用技术重点实验室 浙江省海洋材料与防护技术重点实验室,浙江 宁波 315201 
AuthorInstitution
ZHOU Yong 1.School of Materials Science and Engineering, Shanghai University, Shanghai 200072, China; 2.Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Key Laboratory of Marine Materials and Related Technologies, Ningbo Institute of Materials Technologies and Engineering, Chinese Academy of Sciences, Ningbo 315201, China 
KONG Cui-cui 2.Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Key Laboratory of Marine Materials and Related Technologies, Ningbo Institute of Materials Technologies and Engineering, Chinese Academy of Sciences, Ningbo 315201, China 
LI Xiao-wei 2.Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Key Laboratory of Marine Materials and Related Technologies, Ningbo Institute of Materials Technologies and Engineering, Chinese Academy of Sciences, Ningbo 315201, China 
SUN Li-li 2.Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Key Laboratory of Marine Materials and Related Technologies, Ningbo Institute of Materials Technologies and Engineering, Chinese Academy of Sciences, Ningbo 315201, China 
GUO Peng 2.Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Key Laboratory of Marine Materials and Related Technologies, Ningbo Institute of Materials Technologies and Engineering, Chinese Academy of Sciences, Ningbo 315201, China 
ZHOU Jia 1.School of Materials Science and Engineering, Shanghai University, Shanghai 200072, China; 2.Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Key Laboratory of Marine Materials and Related Technologies, Ningbo Institute of Materials Technologies and Engineering, Chinese Academy of Sciences, Ningbo 315201, China 
LI Yu-hong 3.Gansu Key Laboratory of Solar Power Generation System Project, Jiuquan Vocational and Technical College, Jiuquan 735000, China; 4.Jiuquan Institute of New Energy, Jiuquan 735000, China 
LI Wen-xian 1.School of Materials Science and Engineering, Shanghai University, Shanghai 200072, China 
WANG Ai-ying 2.Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Key Laboratory of Marine Materials and Related Technologies, Ningbo Institute of Materials Technologies and Engineering, Chinese Academy of Sciences, Ningbo 315201, China 
KE Pei-ling 2.Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Key Laboratory of Marine Materials and Related Technologies, Ningbo Institute of Materials Technologies and Engineering, Chinese Academy of Sciences, Ningbo 315201, China 
摘要点击次数:
全文下载次数:
中文摘要:
      目的 研究Ti/Al过渡层对不同溅射电流下的Ti/Al共掺杂DLC薄膜的成分、结构、机械性能和结合力的影响。方法 采用线性离子束复合磁控溅射技术在316L基底上沉积含有Ti/Al过渡层的Ti/Al共掺杂DLC薄膜,利用场发射扫描电子显微镜(SEM)、X射线光电子能谱仪(XPS)、高分辨透射电镜(HRTEM)及共聚焦激光拉曼光谱仪分析了薄膜的界面形貌及键态结构。采用辉光放电光谱仪对样品成分进行深度分析,纳米压痕仪测量薄膜硬度及弹性模量,划痕测试系统测量膜基结合力,残余应力仪测量薄膜内应力。结果 与未添加过渡层相比,添加Ti/Al过渡层对薄膜的结构和机械性能影响较小,且均在溅射电流为2.5 A时有最优的机械性能;然而,溅射电流为2.5 A时,添加过渡层使结合力从54.5 N提高到了67.2 N,提高了19%,残余应力从1.28 GPa降低到了0.25 GPa,降低了80%。结论 Ti/Al过渡层可缓解因DLC薄膜和基体的晶格匹配差异和膨胀系数不同而导致的高界面应力。在薄膜与基底界面,过渡层呈现典型柱状晶结构,可促进膜基界面间的机械互锁,显著改善薄膜与基体之间的结合力而不损伤其机械性能。
英文摘要:
      The work aims to investigate the effect of the Ti/Al transition layer on composition, bonding structure, mechanical properties, and adhesive strength of Ti/Al co-doped DLC films (Ti/Al-DLC). Ti/Al-DLC film with Ti/Al transition layer was deposited on 316L substrates by novel linear ion beam source composited with DC magnetron sputtering process. The interface morphologies and steady structuresof the films were analyzed by field emission scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), high resolution transmission electron microscopy (HRTEM), and confocal laser Raman spec-troscopy. In-depth composition analysis of the sample was performed by glow discharge spectrometer, and the nano-indentation, scratch tester system, and residual stress meter were used to evaluate the hardness and elastic modulus, adhesive strength, and internal stress, respectively. Compared to the film without transition layer, the film with Ti/Al transition layer was slightly affected in the structure and mechanical properties and the optimal mechanical properties were achieved at the sputtering current of 2.5 A. When the sputtering current was 2.5 A, the addition of a Ti/Al transition layer increased the adhesive strength from 54.5 N to 67.2 N, which increased by 19% compared to the film without transition layer. Moreover, the residual stress decreased from 1.28 GPa to 0.25 GPa, which decreased by 80% significantly. The Ti/Al transition layer can further reduce the difference in lattice strain between the DLC film and the substrate and the high interfacial stress caused by the different expansion coefficients. The typical columnar crystal structure for the transition layer formed between the film and the substrate can promote the mechanical interaction between the film-based interfaces and significantly improve the adhesion between the film and the substrate without damaging the mechanical properties.
查看全文  查看/发表评论  下载PDF阅读器
关闭

关于我们 | 联系我们 | 投诉建议 | 隐私保护 | 用户协议

您是第19947026位访问者    渝ICP备15012534号-3

版权所有:《表面技术》编辑部 2014 surface-techj.com, All Rights Reserved

邮编:400039 电话:023-68792193传真:023-68792396 Email: bmjs@surface-techj.com

渝公网安备 50010702501715号