庄栋栋,陈文博,欧阳亚东,贾毅,李阳,刘海霞.低碳钢与304不锈钢的超声空蚀机理对比研究[J].表面技术,2019,48(1):225-233.
ZHUANG Dong-dong,CHEN Wen-bo,OUYANG Ya-dong,JIA Yi,LI Yang,LIU Hai-xia.Comparative Investigation of Ultrasonic Cavitation Erosion Mechanism for Low-carbon and 304 Stainless Steels[J].Surface Technology,2019,48(1):225-233
低碳钢与304不锈钢的超声空蚀机理对比研究
Comparative Investigation of Ultrasonic Cavitation Erosion Mechanism for Low-carbon and 304 Stainless Steels
投稿时间:2018-08-08  修订日期:2019-01-20
DOI:10.16490/j.cnki.issn.1001-3660.2019.01.029
中文关键词:  超声空蚀  低碳钢  304不锈钢  失重  表面形貌
英文关键词:ultrasonic cavitation erosion  low carbon steel  304 stainless steel  cumulative mass loss  surface morphology
基金项目:国家自然科学基金(51775251)
作者单位
庄栋栋 江苏大学 材料科学与工程学院,江苏 镇江 212013 
陈文博 江苏大学 材料科学与工程学院,江苏 镇江 212013 
欧阳亚东 江苏大学 材料科学与工程学院,江苏 镇江 212013 
贾毅 江苏大学 材料科学与工程学院,江苏 镇江 212013 
李阳 江苏大学 材料科学与工程学院,江苏 镇江 212013 
刘海霞 江苏大学 材料科学与工程学院,江苏 镇江 212013 
AuthorInstitution
ZHUANG Dong-dong School of Material Science and Engineering, Jiangsu University, Zhenjiang 212013, China 
CHEN Wen-bo School of Material Science and Engineering, Jiangsu University, Zhenjiang 212013, China 
OUYANG Ya-dong School of Material Science and Engineering, Jiangsu University, Zhenjiang 212013, China 
JIA Yi School of Material Science and Engineering, Jiangsu University, Zhenjiang 212013, China 
LI Yang School of Material Science and Engineering, Jiangsu University, Zhenjiang 212013, China 
LIU Hai-xia School of Material Science and Engineering, Jiangsu University, Zhenjiang 212013, China 
摘要点击次数:
全文下载次数:
中文摘要:
      目的 研究低碳钢及304不锈钢在蒸馏水中的超声空蚀行为及损伤机理,并评价低碳钢及304不锈钢的抗空蚀能力,为抗空蚀材料的选择提供依据。方法 采用符合ASTM国际标准的超声空蚀实验装置,开展低碳钢及304不锈钢在蒸馏水中不同时间的超声空蚀实验,从累积质量损失(失重)、累积质量损失率(失重率)、试样表面形貌和残余应力等方面对两种材料的超声空蚀行为进行描述和对比分析。结果 低碳钢试样空蚀开始15 min后进入空蚀加速期,在90 min左右存在较短的空蚀稳定期,而后迅速进入空蚀衰减期;304不锈钢试样在空蚀30 min内累积失重率变化缓慢,之后随着空蚀时间的延长而急剧增加,在120 min后进入空蚀衰减期。低碳钢与304不锈钢的空蚀变形机制以滑移为主。随着空蚀的发展,低碳钢晶粒经历了晶粒取向→晶粒细化→晶界开裂→晶粒碎化→剥落的变化过程。而在同等实验条件下,304不锈钢试样的变化相对滞后,且残余应力值较大。结论 由于空蚀裂纹在304不锈钢中的深层扩展受到奥氏体相的阻碍,从而对空蚀的发展产生关键的抑制作用,使得304不锈钢的抗空蚀能力较强。
英文摘要:
      The work aims to study ultrasonic cavitation erosion behavior and mechanism of low-carbon and 304 stainless steels in distilled water, and evaluate cavitation resistance for low-carbon and 304 stainless steels to provide a basis for selecting cavitation resistant materials. An ultrasonic cavitation erosion test rig meeting ASTM international standards was used to conduct ultrasonic cavitation experiments of low-carbon and 304 stainless steels in distilled water for different time. The ultrasonic cavitation behaviors of the two materials were described and analyzed contrastively through cumulative mass loss (weight loss), cumulative mass loss rate (weight loss rate), surface morphology and residual stress. Low carbon steel sample entered acceleration stage after 15 minutes of cavitation, had shorter stabilization stage around 90 minutes of cavitation, and then quickly reached attenuation stage as cavitation time increased. The cumulative weight loss rate of the 304 stainless steel sample changed slowly within 30 minutes of cavitation, and then increased sharply with the increase of cavitation time. After 120 minutes of cavitation, the 304 stainless steel sample entered the attenuation stage. Slip effect dominated the deformation of the two steels during the cavitation erosion process. As the cavitation erosion developed, grains of the low-carbon steel underwent consecutively steps of grain orientation, grain refinement, grain boundary cracking, grain fragmentation and grain flaking. Under the same experimental conditions, corresponding variations of 304 stainless steel were lagging relative to those of the low-carbon steel. The residual stress of 304 stainless steel was relatively high. The extension of cavitation erosion cracks into 304 stainless steel is hindered by the austenite phase, thus significantly inhibiting the growth of cavitation erosion and improving the resistance to cavitation erosion of 304 stainless steel.
查看全文  查看/发表评论  下载PDF阅读器
关闭

关于我们 | 联系我们 | 投诉建议 | 隐私保护 | 用户协议

您是第20077053位访问者    渝ICP备15012534号-3

版权所有:《表面技术》编辑部 2014 surface-techj.com, All Rights Reserved

邮编:400039 电话:023-68792193传真:023-68792396 Email: bmjs@surface-techj.com

渝公网安备 50010702501715号