吕长乐,何卫锋,徐伟胜,蔡振兵,廖斌,曹鑫,谭超.恒定动能Si3N4颗粒重复冲击不同厚度TiN/Ti涂层损伤特征对比分析[J].表面技术,2018,47(12):205-213.
LYU Chang-le,HE Wei-feng,XU Wei-sheng,CAI Zhen-bing,LIAO Bin,CAO Xin,TAN Chao.Comparative Analysis of Cycling Impact Damage Characteristics of TiN/Ti Coatings with Different Thickness under Constant Kinetic Energy Si3N4 Particles Mode[J].Surface Technology,2018,47(12):205-213
恒定动能Si3N4颗粒重复冲击不同厚度TiN/Ti涂层损伤特征对比分析
Comparative Analysis of Cycling Impact Damage Characteristics of TiN/Ti Coatings with Different Thickness under Constant Kinetic Energy Si3N4 Particles Mode
投稿时间:2018-06-22  修订日期:2018-12-20
DOI:10.16490/j.cnki.issn.1001-3660.2018.12.028
中文关键词:  重复冲击  TiN/Ti涂层  动力学响应  疲劳圆周裂纹  疲劳剥落  应力梯度
英文关键词:cycling impact  TiN/Ti coating  dynamic response  fatigue circular crack  fatigue spalling  stress gradient
基金项目:陕西省重点研发计划(2017ZDXM-GY-048)
作者单位
吕长乐 1.空军工程大学 等离子体动力学重点实验室,西安 710038 
何卫锋 1.空军工程大学 等离子体动力学重点实验室,西安 710038 
徐伟胜 1.空军工程大学 等离子体动力学重点实验室,西安 710038 
蔡振兵 2.西南交通大学 摩擦学研究所,成都 610031 
廖斌 3.北京师范大学 核科学与技术学院,北京 100875 
曹鑫 1.空军工程大学 等离子体动力学重点实验室,西安 710038 
谭超 1.空军工程大学 等离子体动力学重点实验室,西安 710038 
AuthorInstitution
LYU Chang-le 1.Key Laboratory of Science and Technology on Plasma Dynamics, Air Force Engineering University, Xi'an 710038, China 
HE Wei-feng 1.Key Laboratory of Science and Technology on Plasma Dynamics, Air Force Engineering University, Xi'an 710038, China 
XU Wei-sheng 1.Key Laboratory of Science and Technology on Plasma Dynamics, Air Force Engineering University, Xi'an 710038, China 
CAI Zhen-bing 2.Triboligy Research Institute, Southwest Jiaotong University, Chengdu 610031, China 
LIAO Bin 3.School of Nuclear Science and Technology, Beijing Normal University, Beijing 100875, China 
CAO Xin 1.Key Laboratory of Science and Technology on Plasma Dynamics, Air Force Engineering University, Xi'an 710038, China 
TAN Chao 1.Key Laboratory of Science and Technology on Plasma Dynamics, Air Force Engineering University, Xi'an 710038, China 
摘要点击次数:
全文下载次数:
中文摘要:
      目的 研究砂粒冲击航空发动机压气机叶片不同厚度的TiN/Ti硬质涂层损伤特征与机理。方法 采用Si3N4硬质球恒定动能垂直重复冲击试验方法,研究厚度对TiN/Ti涂层冲击损伤的影响。通过对比涂层动力学响应、能量吸收率、冲击坑点轮廓、H3/E2值和损伤形貌,分析不同厚度涂层的冲击坑点损伤特征。利用ABAQUS软件仿真获得垂直冲击下涂层的应力分布。结果 在调制比为9∶1的两层TiN/Ti涂层中,厚度为25 μm的涂层坑点直径最大,达到382.49 μm,比坑点直径最小的涂层(20 μm)大了24.8%;厚度为25 μm的涂层坑点最深,达到8.17 μm,比坑点最浅的涂层(15 μm)大了49.9%;厚度为5 μm涂层的接触力峰值最大,为161.4 N,比接触力峰值最小的涂层(20 μm)大了26.1%。随着涂层厚度的增加,涂层的抗冲击能力先增加后减小,厚度为20 μm的涂层抗冲击能力最好。冲击坑点损伤特征有三种:中心区与过渡区的疲劳剥落与疲劳磨损,边缘区的疲劳圆周裂纹与疲劳剥落,涂层/基体变形,其中,以剥落为主。结论 硬质层内的应力梯度和重复交变拉/压应力导致硬质层内产生疲劳圆周裂纹和疲劳剥落,硬质层与结合层界面处的高应力梯度导致产生层间疲劳剥落。
英文摘要:
      The work aims to study the damage characteristics and mechanism of TiN/Ti hard coatings with different thickness deposited on the aero-engine compressor blades under the impact of sand particles. Vertical cycling impact test of Si3N4 hard particle under constant kinetic energy was adopted. The influence of thickness on the impact damage of TiN/Ti coatings was investigated. The impact damage characteristics of coatings with different thickness were analyzed by dynamic response of coatings, energy absorption rates, contours of impact pit, H3/E2 values of coatings and damage morphologies. The stress distri-bution of coating under normal impact was obtained by ABAQUS software simulation. It was found that among the bilayer TiN/Ti coating of modulation 9∶1, the pit diameter of coating with 25 μm was the largest, about 382.49 μm, and 24.82% larger than the minimum pit diameter of coating with 20 μm. The pit depth of coating with 25 μm was the largest, about 8.17 μm and 49.91% larger than the minimum pit depth of coating with 15 μm. The contact peak force of coating with 5 μm was the largest, about 161.44 N and 26.16% larger than the minimum contact peak force of coating with 20 μm. There were three characteristics of impact pit damage: the fatigue spalling and fatigue wear in the central zone and intermediate zone, fatigue circular crack and fatigue spalling in peripheral zone and deformation of coating/substrate. Spalling was the main damage characteristic. With the increase of the coating thickness, the impact resistance of coating increases first and then decreases. The coating with 20 μm thickness shows the best anti-impact performance among different thickness. The stress gradient and cycling alternating tension-compression stress in the hard layer account for the fatigue circular crack and fatigue spalling and the high stress gradient in interface of hard and bonding layers accounts for the interface fatigue pilling.
查看全文  查看/发表评论  下载PDF阅读器
关闭

关于我们 | 联系我们 | 投诉建议 | 隐私保护 | 用户协议

您是第19928158位访问者    渝ICP备15012534号-3

版权所有:《表面技术》编辑部 2014 surface-techj.com, All Rights Reserved

邮编:400039 电话:023-68792193传真:023-68792396 Email: bmjs@surface-techj.com

渝公网安备 50010702501715号