王程伟,李秀红,李文辉,王娜,杨胜强.主轴式滚磨光整加工中介质流场的数值模拟及作用机理分析[J].表面技术,2018,47(11):251-258.
WANG Cheng-wei,LI Xiu-hong,LI Wen-hui,WANG Na,YANG Sheng-qiang.Analaysis on Numerical Simulation and Mechanism of Medium Flow Field in Spindle Barrel Finishing Process[J].Surface Technology,2018,47(11):251-258
主轴式滚磨光整加工中介质流场的数值模拟及作用机理分析
Analaysis on Numerical Simulation and Mechanism of Medium Flow Field in Spindle Barrel Finishing Process
投稿时间:2018-05-17  修订日期:2018-11-20
DOI:10.16490/j.cnki.issn.1001-3660.2018.11.036
中文关键词:  滚磨光整加工  滚抛磨块  数值模拟  液固耦合  动态力测试
英文关键词:barrel finishing  abrasive  numerical simulation  liquid-solid coupling  dynamic force test
基金项目:国家自然科学基金(U1510118);山西省自然科学基金(201701D121073)
作者单位
王程伟 1.太原理工大学 机械工程学院,太原 030024;2.精密加工山西省重点实验室,太原 030024 
李秀红 1.太原理工大学 机械工程学院,太原 030024;2.精密加工山西省重点实验室,太原 030024 
李文辉 1.太原理工大学 机械工程学院,太原 030024;2.精密加工山西省重点实验室,太原 030024 
王娜 1.太原理工大学 机械工程学院,太原 030024;2.精密加工山西省重点实验室,太原 030024 
杨胜强 1.太原理工大学 机械工程学院,太原 030024;2.精密加工山西省重点实验室,太原 030024 
AuthorInstitution
WANG Cheng-wei 1.School of Mechanical Engineering, Taiyuan University of Technology, Taiyuan 030024, China; 2.Shanxi Key Laboratory of Precision Machining, Taiyuan 030024, China 
LI Xiu-hong 1.School of Mechanical Engineering, Taiyuan University of Technology, Taiyuan 030024, China; 2.Shanxi Key Laboratory of Precision Machining, Taiyuan 030024, China 
LI Wen-hui 1.School of Mechanical Engineering, Taiyuan University of Technology, Taiyuan 030024, China; 2.Shanxi Key Laboratory of Precision Machining, Taiyuan 030024, China 
WANG Na 1.School of Mechanical Engineering, Taiyuan University of Technology, Taiyuan 030024, China; 2.Shanxi Key Laboratory of Precision Machining, Taiyuan 030024, China 
YANG Sheng-qiang 1.School of Mechanical Engineering, Taiyuan University of Technology, Taiyuan 030024, China; 2.Shanxi Key Laboratory of Precision Machining, Taiyuan 030024, China 
摘要点击次数:
全文下载次数:
中文摘要:
      目的 研究主轴式滚磨光整加工中介质流场的作用机理和工艺参数对加工能力的影响规律。方法 基于多相流Mixture模型、标准k-ε湍流模型和压力速度耦合SIMPLEC算法,对主轴式滚磨光整加工中介质流场构成的固液两相湍流进行数值模拟。通过改变滚筒转速和工件轴心距筒壁距离等工艺参数,分析在不同参数下滚抛磨块的速度矢量和工件表面压力的分布规律,并通过测试实验验证模拟的有效性。结果 0?处静压值在32 MPa,为静压最大点;90?和270?处动压在35 MPa左右,为动压最大点。尾流区域总压力大幅削减为0°处的33%。工件表面的总压和滚筒转速成指数函数关系,且滚筒转速大于50 r/min时,0?和270?处总压值达到32 MPa,并迅速增大。工件轴心和筒壁的距离为65 mm的区域,工件表面的总压均值最大为19 MPa,且距离为30 mm时,270?处滚抛磨块受筒壁影响,总压变为负值。数值模拟和实验结果的压力平均误差为5.25%。结论 工件上正对滚抛磨块处为碰撞和挤压作用,两侧主要为滑擦作用。滚筒转速大于50 r/min且工件轴心和筒壁的距离为65 mm时,滚抛磨块对工件的加工能力较强。
英文摘要:
      This work aims to analyze the effects of mechanism and process parameters of medium flow filed on the processing capacity during the spindle-type barrel finishing. Based on mixture model, standard k-ε turbulence model and pressure-velocity coupled SIMPLEC algorithm, numerical simulation was performed for the solid-liquid two-phase turbulent flow composed by the medium flow field in spindle barrel finishing process. The distribution of abrasive velocity vector and workpiece surface pressure under different parameters was analyzed by changing the process parameters like barrel speed, distance from workpiece axis to the barrel wall. The effectiveness of the simulation was verified by test experiments. The maximum point of static pressure was 32 MPa at 0°, the maximum point of dynamic pressure was about 35 MPa at 90° and 270°, and the total pressure in the wake area was greatly reduced to 33% at 0°. The total pressure on the workpiece surface was exponentially related to the rotation speed of the drum. When the rotating speed was more than 50 r/min, the total pressure value reached 32 MPa at 0° and 270° and increased rapidly. In the area where the distance between the axis of the workpiece and the wall of the drum was 65 mm, the maximum total pressure of the workpiece surface was 19 MPa. When the distance was 30 mm, the total pressure was negative at 270° due to the effect on abrasive by drum wall. The average pressure error between numerical simulation and experimental results was 5.25%. The part on the workpiece facing abrasive is subject to impact and compression, while two sides are subject to scratching effect. When the rotating speed is greater than 50 r/min and the distance between the axis of the workpiece and the wall is 65 mm, the machining ability of the abrasive is relatively strong.
查看全文  查看/发表评论  下载PDF阅读器
关闭

关于我们 | 联系我们 | 投诉建议 | 隐私保护 | 用户协议

您是第19957144位访问者    渝ICP备15012534号-3

版权所有:《表面技术》编辑部 2014 surface-techj.com, All Rights Reserved

邮编:400039 电话:023-68792193传真:023-68792396 Email: bmjs@surface-techj.com

渝公网安备 50010702501715号