刘迪,高潘,蔡杰,张凌燕,吕鹏,关庆丰.GH80A经强流脉冲电子束改性后的高温氧化行为研究[J].表面技术,2018,47(11):157-165.
LIU Di,GAO Pan,CAI Jie,ZHANG Ling-yan,LYU Peng,GUAN Qing-feng.High Temperature Oxidation Behavior of Nickel-based Superalloy GH80A Treated by High-current Pulsed Electron Beam[J].Surface Technology,2018,47(11):157-165
GH80A经强流脉冲电子束改性后的高温氧化行为研究
High Temperature Oxidation Behavior of Nickel-based Superalloy GH80A Treated by High-current Pulsed Electron Beam
投稿时间:2018-05-28  修订日期:2018-11-20
DOI:10.16490/j.cnki.issn.1001-3660.2018.11.023
中文关键词:  强流脉冲电子束  镍基高温合金GH80A  微观结构  抗高温氧化性能
英文关键词:high-current pulsed electron beam (HCPEB)  nickel-based superalloy GH80A  microstructure  high temperature oxidation resistance
基金项目:国家自然科学基金项目(51601071,51601072);江苏大学高级人才基金项目(14JDG127);江苏省自然科学基金青年基金(BK20160530);江苏大学青年英才培育计划项目
作者单位
刘迪 1.江苏大学 a.材料与科学工程学院,江苏 镇江 212013 
高潘 1.江苏大学 a.材料与科学工程学院,江苏 镇江 212013 
蔡杰 1.江苏大学 b.先进制造与现代装备技术工程研究院,江苏 镇江 212013 
张凌燕 2.南京理工大学 理学院,南京 210049 
吕鹏 1.江苏大学 a.材料与科学工程学院,江苏 镇江 212013 
关庆丰 1.江苏大学 a.材料与科学工程学院,江苏 镇江 212013 
AuthorInstitution
LIU Di 1.a.School of Material Science and Engineering, Jiangsu University, Zhenjiang 212013, China 
GAO Pan 1.a.School of Material Science and Engineering, Jiangsu University, Zhenjiang 212013, China 
CAI Jie 1.b.Institute of Advanced Manufacturing and Modern Equipment Technology, Jiangsu University, Zhenjiang 212013, China 
ZHANG Ling-yan 2.School of Science, Nanjing University of Science and Technology, Nanjing 210049, China 
LYU Peng 1.a.School of Material Science and Engineering, Jiangsu University, Zhenjiang 212013, China 
GUAN Qing-feng 1.a.School of Material Science and Engineering, Jiangsu University, Zhenjiang 212013, China 
摘要点击次数:
全文下载次数:
中文摘要:
      目的 提高燃气轮机叶片材料镍基高温合金GH80A的抗高温氧化性能。方法 利用强流脉冲电子束(High-Current Pulsed Electron Beam, HCPEB)技术对GH80A合金进行表面处理。研究HCPEB辐照前后GH80A的微观结构变化及在850 ℃恒温氧化后的氧化动力学行为及氧化机制。利用光学显微镜、X射线衍射仪和扫描电子显微镜对HCPEB诱发的微观结构和氧化产物进行了表征。结果 HCPEB辐照后,GH80A合金表面发生熔化,形成厚约3 μm的重熔层,重熔层内形成大量的位错滑移,且晶粒明显得到细化。850 ℃高温氧化实验结果表明,氧化100 h后,原始样品氧化增重最大,生成的氧化膜较厚,且存在大量裂纹,所生成的Cr2O3发生了挥发,导致氧化膜疏松多孔,基体发生了严重的内氧化。HCPEB辐照20次后,样品氧化增重最小,100 h氧化后形成的氧化膜主要由外层TiO2和内层Cr2O3构成。外层连续致密的TiO2抑制了保护性氧化膜Cr2O3的挥发,因此生成的Cr2O3氧化膜连续、致密、无剥落,对基体起保护作用。结论 HCPEB辐照后,GH80A合金的抗高温氧化性能明显提升,20次辐照样品的抗高温氧化性能最佳。
英文摘要:
      The work aims to improve the high temperature and oxidation resistance of GH80A used in gas turbine blade. High-Current Pulsed Electron Beam (HCPEB) technology was applied to treat the surface of nickel-based superalloy GH80A. Microstructural evolution and oxidation behavior and mechanism at 850 ℃ of GH80A before and after HCPEB irradiation were investigated. The microstructure and oxidation products induced by HCPEB were characterized by optical microscope (OM), X-ray diffraction (XRD) and scanning electron microscopy (SEM). After HCPEB irradiation, the surface of GH80A alloy was melted apparently and a 3 μm thick remelted layer was formed. Besides, a large number of dislocation slips were formed in the remelted layer, and the crystal grains were clearly refined. From the results of high-temperature oxidation test at 85 ℃, after oxidation for 100 h, the initial sample had the largest oxidation weight gain and the oxide scale was rather thicker with a lot of cracks. The Cr2O3 was volatilized, so the oxide film was porous. The matrix appeared severe internal oxidation. After HCPEB irradiation for 20 times, the weight gain of sample was the smallest. The oxide scale was composed of TiO2 outer layer and Cr2O3 inner layer after 100-hour oxidiation. The continuous and dense TiO2 produced in the outer layer inhibited the volatilization of Cr2O3, so the Cr2O3 oxide film was continuous and dense without peeling and protected the substrate to some extent. After HCPEB irradiation, the high temperature oxidation performance of samples GH80 alloy is significantly improved. The high temperature oxidation resistance of 20-pulsed irradiated samples is the best.
查看全文  查看/发表评论  下载PDF阅读器
关闭

关于我们 | 联系我们 | 投诉建议 | 隐私保护 | 用户协议

您是第19941946位访问者    渝ICP备15012534号-3

版权所有:《表面技术》编辑部 2014 surface-techj.com, All Rights Reserved

邮编:400039 电话:023-68792193传真:023-68792396 Email: bmjs@surface-techj.com

渝公网安备 50010702501715号