陈家伟,廖凯,车兴飞,钟利萍,龚海.铝合金喷丸应力-变形的仿真分析与实验[J].表面技术,2018,47(11):41-47.
CHEN Jia-wei,LIAO Kai,CHE Xing-fei,ZHONG Li-ping,GONG Hai.Simulation Analysis and Experiment of Surface Stress-Deformation on Al-based Alloy by Shot Peening[J].Surface Technology,2018,47(11):41-47
铝合金喷丸应力-变形的仿真分析与实验
Simulation Analysis and Experiment of Surface Stress-Deformation on Al-based Alloy by Shot Peening
投稿时间:2018-08-13  修订日期:2018-11-20
DOI:10.16490/j.cnki.issn.1001-3660.2018.11.006
中文关键词:  喷丸强化  有限元模型  表面应力  强化层  铝合金
英文关键词:shot peening  FEM  surface stress  strengthened layer  Al-based alloy
基金项目:国家自然科学基金(51475483);湖南省重点研发计划项目(2018NK2065);湖南省高校科技创新团队支持计划项目(2014207)
作者单位
陈家伟 1.中南林业科技大学,长沙 410004 
廖凯 1.中南林业科技大学,长沙 410004 
车兴飞 1.中南林业科技大学,长沙 410004 
钟利萍 1.中南林业科技大学,长沙 410004 
龚海 2.中南大学,长沙 410083 
AuthorInstitution
CHEN Jia-wei 1.Central South University of Forestry and Technology, Changsha 410004, China 
LIAO Kai 1.Central South University of Forestry and Technology, Changsha 410004, China 
CHE Xing-fei 1.Central South University of Forestry and Technology, Changsha 410004, China 
ZHONG Li-ping 1.Central South University of Forestry and Technology, Changsha 410004, China 
GONG Hai 2.Central South University, Changsha 410083, China 
摘要点击次数:
全文下载次数:
中文摘要:
      目的 揭示喷丸处理对7075-T651铝合金材料表面应力场和形貌改变的作用机制。方法 首先利用ANSYS/LS-DYNA有限元软件分别建立单颗弹丸和多颗弹丸撞击铝合金靶材的有限元模型,并在符合实验外场边界条件的前提下,获得材料表面200 μm深度的内应力分布和不同撞击次数后的表面变形情况。然后通过实验所测结果修正模型丸粒撞击参数,包括网格划分密度、丸粒撞击次数、接触速度等,并结合仿真计算结果阐述喷丸表面应力分布和变形强化层的形成机理。结果 计算与实验结果对比表明,喷丸仿真模型的计算结果与实验吻合较好。一方面,表面逐层应力分布规律与喷丸实际接近,表面应力最大偏差小于25 MPa,这说明模型中设置的喷丸强度正确。另一方面,6次弹丸撞击造成的强化层变形率小于6%,并逐步趋于稳定,这与实验中采用多次喷丸表面覆盖导致的材料硬化现象一致,从而间接说明靶材模型单元与参数设置的准确性。结论 分析认为,喷丸建模方法能够快速准确地计算出材料表面应力-变形状况,为揭示喷丸工艺对材料表面的强化规律发挥积极作用。
英文摘要:
      The work aims to discover the mechanism of shot peening (SP) to change the surface field and surface morphology of 7075-T651 Al-based alloy. Firstly, the finite element models (FEM) of SP involving single projectile and projectiles were set by ANSYS/LS-DYNA respectively to calculate the 200 μm deep stress distribution on materials surface and the surface deformation via different peening times based on the boundary condition of experiment. Then the collision parameters in the model were corrected by experimental results, including meshing density, number of peening times by shot and contact speed, etc. Finally, the calculation of FEM dedicated the surface stress distribution and mechanism of strengthened layer on surface by SP treatment. Through the contrast, the calculation and experimental results of SP simulation model matched with each other. The stress profile from surface to subsurface via FEM agreed with experimented data. The maximum deviation of surface stress was less than 25 MPa, which indicated that the shot peening strength in the model was correct. Furthermore, the deformation ratio of strengthened layer by 6 times of projectile impacts was less than 6% and gradually tended to be stable. This phenomenon was consistent with the hardening situation of the material via the multiple surface coverage in the SP experiment, which indicated the accuracy of the target model and parameters in FEM indirectly. Through the analysis, the FEM of SP can calculate the stress-deformation on materials surface quickly and correctly and play a positive role in exploring the influence rules of SP technology on the characteristics of materials surface.
查看全文  查看/发表评论  下载PDF阅读器
关闭

关于我们 | 联系我们 | 投诉建议 | 隐私保护 | 用户协议

您是第20038089位访问者    渝ICP备15012534号-3

版权所有:《表面技术》编辑部 2014 surface-techj.com, All Rights Reserved

邮编:400039 电话:023-68792193传真:023-68792396 Email: bmjs@surface-techj.com

渝公网安备 50010702501715号